
LISP(U) MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
INTELLIGENCE LAB H ABELSON ET AL. AUG 85 AI-M-8S

UNCLSSIFIED N9848--55FO92 N

111.0 We W

All Hill

1.25 IA 116

Nm MICROCOPY RESOLUTION TEST CHART
NATIONAL WillA OF STANDARDS- 1963-A

*1w

z:.

I .-

AI Memo 848

The Revised
Revised Report
on Scheme or

An UnCommon
,Lisp •

DTI
ELECE

Data and procedures and the values they amass, .
Higher-order functions to combine and mix and match,
Objects with their local state, the messages they pass,
A property, a package, the control point for a catch -
In the Lambda Order they are all first-class. *
One Thing to name them all, One Thing to define them,
One Thing to place them in environments and bind them,
In the Lambda Order they are all first-class.

MIT Artificial Intelligence Laboratory

Thi:- dUIMn mth!j;y ~:3 bc-a
for Public r'eloazo and sal", i's
distibution isunimited 5 9 2 2

.85

24 0

Sf CUITs,CLASSIFCATIOM OF ~ TWS AG Ilee, Data EnIodj _________________

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM %

REPORT NAUNS N 2 GOVT ACCESSION NO* CATALOG NUMBER

AIM 848 RC NT*

4. ?IT LE (andE Subif ea0 S. TYPE oF REPORT a PERIOD COVERED /
The Revised Revised Report on Scheme or The
Uncommon Lisp AI Memo

a. PERFORMING ONG. R4EPORT NUMBER f%
7. AUTN4OR(s) I.- * COO PACT Olt GRANT NUMBER(s)

Hal Abelson et al N00014-80-C-0505 ~

9. PERFORMING ORGANIZATION. NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Lab. AE OKUI UUR

545 Technology Sq.
Cambridge,_MA_02139______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Proj ects Agency Auguet 1985
1400 Wilson Blvd. 12. "110116tER OF PAGES

ArlnatnVA 22209_______________
04MNtRN AGEN4CY NAME & ADORESS(It diffrnt from. Controind Office) IS. SIECURITY CLASS. fr Ohio* rpet)

Office of Naval Research
Information Systems Ucasfe
Arlington, VA 22217 162. DEk SSIFICATION/OOWNGRAOING

16. DISTRIBUTION STATIEMENT lot this Rh~epr)

Distribution is Unlimited*

17. DIST RISUTION STATEMENT (of If. ab.1re.enmted mIn Bloc 31..if EfWmiten 600 Roed) .

1S. SUPPLEMENTARY MOTES

None

IS. KIEY WORD0S (Conine. an e...,.. old* Iffnecosoory mid ld"uI by filckbe

SCHEME,
LISP
Functional Programming
Computer Languages

20. ABSTRACT (CmiIOMmi mi ,.0ar6e de Ineaomdimilrb el.ua
Data and procedures and the values they amass,
Higher order functions to combine and mix and match,

* Objects with their local state, the message they pass,
A property, a package, the control point for a catch-
In the Lambda Order they are all first class.
One thing to name them all, One thing to define them,
One thing to place them in enviorments and bind them,
In the Lambda Order they are all first class.

DD I O.j7 1473 EDITION oF Nov Is OUSOLATE! UNCLASSIFIED
S/N O2~0I~ 6611 SCURITY CLASSIFICATION OF TNIS PAGE (1,,. on Intmt Ze.

%

Wr P F

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo No. 848 August 1985

The Revised Revised Report on Scheme

or

An UnCommon Lisp -

by
------- -- ---

Hal Abelson Chris Haynes -----------
Norman Adams Eugene Kohibecker ..-

David Bartley Don Oxley
Gary Brooks Kent Pitman
William Clinger [editor] Jonathan Rees U
Dan Friedman Bill Rozas
Robert Halstead Gerald Jay Sussnan
Chris Hanson Mitchell Wand___________

Keywords: SCHEME, LISP, functional programmng, computer languages.
safe

Abstract

Data and procedures and the values they amass,
Higher-order functions to combine "nd miz and match,
Objects with their local state, the messa ges they pass,
A property, a package, the control point for a catch-
In the Lambda Order they are all first-class.
One Thing to name them all, One Thing to define them.
One Thing to place them in envirounente and bind them,
In the Lambda Order they are all first-class.

This report describes researach done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology and the Computer Science De-
partment of Indiana University. Support for the MIT research is provided in
part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract NO0014-80-C-0505. Support for the
Indiana University research is provided by NSF Grants NCS 83-0467 and
NCS 83-03325. This report is published at Indiana University as Computer
Science Department Technical Report 174, June 1985.

The Revised Revised Report on Scheme 2

Table of Contents

Acknowledgements 3
Part I: Introduction to Scheme 4

1.0 Brief history of Scheme 4 L

1.1 Syntax of Scheme 5
1.2 Semantics of Scheme 7

Part II: A catalog of Scheme 9

Notational conventions; V ,-

I11 Special forms' 44 1-
12 Booleans; 22

3 Equivalence predicates; '44 'a-
.4 Pairs and lists 26 -

.5 Symbols, 3&-- -
11.6 Numbers , 36&-

.i7 Character., 49---

.8 Strings; St '.5
M9 Vetors,' '4

I1l0 The object tables _-
11.11 Procedures, 6*-,
11.12 Ports,, 6t*"-
1.13 Input; 63"

__Yj14 Output, 66- - -

Bibliography and Referenc.67
Index 70

'

'

'

• . .- ,' " ."%* % %" " %", %.. -''...,. . r. ,'. c *: * ".. S .'.' *%• ,., .- -,.",.b ,S , I . . .".. ; . ,--. . .,",, .*.* .* . . ,-..-, t '.,.

The Revised Revised Report on Scheme S

Acknowledgements

This report is primarily the work of a group of people who met at Bran-
deis University for two days in October 1984. Participating in that workshop
were Hal Abelson, Norman Adams, David Bartley, Gary Brooks, William
Clinger, Dan Friedman, Robert Halstead, Chris Hanson, Chris Haynes, Eu-
gene Kohlbecker, Don Oxley, Jonathan Rees, Bill Rozas, Gerald Sussman,
and Mitchell Wand. Kent Pitman made valuable contributions to the agenda
for the workshop but was unable to attend the sessions.

We would like to thank the following people for their comments and criticisms
in the months following the workshop: George Carrette, Kent Dybvig, Andy
Freeman, Yekta Gursel, Paul Hudak, Chris Lindblad, John Ramsdell, and
Guy Steele Jr.

We thank Carol Fessenden, Dan Friedman, and Chris Haynes for permission S
to use text from the Scheme 311 Version 4 reference manual. We thank Gerry
Sussman for drafting the chapter on numbers, Chris Hanson for drafting the
chapters on characters and strings, and Gary Brooks and William Clinger
for drafting the chapters on input and output. We gladly acknowledge the
influence of manuals for MIT Scheme, T, Scheme 84, and Common Lisp.

We also thank Betty Dexter for the extreme effort she put into setting this
report in fTTX, and Don Knuth for designing the program that caused her
troubles.

We intend this report to belong to the entire Scheme community, and so we
grant permission to copy it in whole or in part without fee. In particular, we
encourage implementors of Scheme to use this report as a starting point for
manuals and other documentation, modifying it as necessary.

Editor's note: This report records the unanimous decisions made through a
remarkable spirit of compromise at Brandeis, together with the fruits of sub-
sequent committee work and discussions made possible by various computer
networks. I have tried to edit these into a coherent document while remaining
faithful to the workshop's decisions and the community's consensus. I apol-
ogize for any cases in which I have misinterpreted the authors or misjudged
the consensus.

William Clinger

16

:.,,,. . ,-. ...,.;. ..,".'.....,. . .. ,. ., .. . , . .-.'.;.-% .,..-,. . ,...,;,.- ,-.-.-.-.,. ..,:.,' .L . -.- .,. '.,% - ;
If 0 " -2.: . .:.,-.' I ,,i, ;.,S": -;,=,,, '" " . .,,.,..., . ""'' :. ;," ' " ." . " '

The Revised Revised Report on Scheme 4

Part I: Introduction to Scheme

I. Brief history of Scheme

Scheme is a statically scoped and properly tail-recursive dialect of the
Lisp programming language invented by Guy Lewis Steele Jr and Gerald Jay
Sunman. It was designed to have an exceptionally clear and simple semantics
and very few different methods of expression formation.

The first description of Scheme was written in 1975 [28]. A Revised Report
[24] appeared in 1978, which described the evolution of the language as its
MIT implementation was upgraded to support an innovative compiler [21].
Three distinct projects began in 1981 and 1982 to use variants of Scheme for
courses at MIT, Yale, and Indiana University [11, 14, 4]. An introductory
computer science textbook using Scheme was published in 1984 [1].

As might be expected of a language used-primarily for education and research,
Scheme has always evolved rapidly. This was no problem when Scheme was
used only within MIT, but as Scheme became more widespread local subdi-
alects began to diverge until students and researchers occasionally found it
difficult to understand code written at other sites. Fifteen representatives of
the major implementations of Scheme therefore met in October 1984 to work
toward a better and more widely accepted standard for Scheme. This paper

reports their unanimous recommendations augmented by committee work in
athe areas of arithmetic, characters, strings, and input/output.

Scheme shares with Common Lisp [23] the goal of a core language common to
several implementations. Scheme differs from Common Lisp in its emphasis
upon simplicity and function over compatibility with older dialects of Lisp.

V V.

.1,
o,.

.. % .

b
e

&
'

Tke Revised Revised Report on Scheme S

.I Syntax

Formal definitions of the lexical and context-free syntaxes of Scheme will
be included in a separate report.

Identifiers

Most identifiers allowed by other programming languages are also ac-
ceptable to Scheme. The precise rules for forming identifiers vary among
implementations of Scheme, but in all implementations a sequence of char-
acters that contains no special characters and begins with a character that
cannot begin a number is an identifier. There may be other identifiers as well,
and in particular the following are identifiers:

+ - 1+ -1+

It is guaranteed that the following characters cannot begin a number, so
identifiers other than the four listed above should begin with one of:

abcdefghijklanopqrstuvvxyz
ABCDEFGHI JKLMIOPQRSTUVVXYZ

I$%&*/: <->?-"

Subsequent characters of the identifier should be drawn from:

abcdefghijklanopqr.tuvwxyz
ABCDEFGHI JKLMNOPqISTUVWXYZ

0123456789
• I *$1k*/: <->?."_. "

The cae in which the letters of an identifier are typed is immaterial. For
example, Foo is the same identifier as FOO.

The following characters are special, and should never be used in an identifier:

) () [){ •; ~,k

Scheme deliberately does not specify whether the following characters can be
used in identifiers:

"* * .

Raiooale: Some implementations might want to use backslash (\) and vertical
bar (I) as in Common Lisp. As for the others there are two schools of thought.
One school argues that disallowing special characters in identifiers allows the
computer to catch more typing errors. The other school agrees only for special
characters that come in pairs, on the grounds that errors involving only the
unpaired special characters are easier to see.

-. %.

. ,,..*/ %,,.,.a'm .d~k d ******5*J***~dm~~mmd **-*..t ..m~a .-a*-*-. 5S-

*The Revised Revised Report on Scheme 6

Numbers

For a description of the notations used for numbers, see section 11.6.
r

Comments

A semicolon indicates the start of a comment. The comment continues to
the end of the line on which the semicolon appears. Comments are invisible
to Scheme, but the end of the line is visible as whitespace. This prevents a
comment from appearing in the middle of an identifier or number.

Other notations

Left and right parentheses are used for grouping and to notate lists as
described in section 11.4. Left and right square brackets and curly braces are
not used in Scheme right now but are reserved for unspecified future uses.

The quote V) and backquote (C) characters are used to indicate constant or
almost-constant data as described in section 11.1. The comma is used together
with the backquote, and the atsign (a is used together with the comma.

The doublequote character is used to notate strings as described in section

The sharp sign (#) is used for a variety of purposes depending on the char-
acter that follows it. A sharp sign followed by a left parenthesis signals the

* beginning of a vector, as described in section 11.9. A sharp sign followed by an
exclamation point is used to notate one of the special values #1I true, #1I faelse,
and #I null. A sharp sign followed by a backslash is used to notate charac-
ters as described in section 11.7. A sharp sign followed by any of a number of
letters is used in the notation for numbers as described in section 11.6

Context free grammar for Scheme

The following grammar is ambiguous because a <special f orm> looks like
a <procedure call>. Some implementations resolve the ambiguity by re- -

serving the identifiers that serve as keywords of special forms, while other
implementations allow the keyword meaning of an identifier to be shadowed
by lexical bindings.

.~.%*.

The Revised Revised Report on Scheme 7

<expression> ::- <constant> < (identifier> I

<special form> I <procedure call>

<constant> ::- numeral> I <string> I

(quote (datum>) I '<datum> I

*ltrue I #lfalse I flnull

<special form> ::- (<keyword> <syntactic component> ...)

<procedure call> ::- (<operator> <operands>)

<operator> < (expression>

<operands> :: <empty> I <expression> <operands>

<datum> stands for any written representation of a Scheme object, as de-
scribed in the sections that follow. <identifier> has already been described
informally. <numeral> is described in section 1.6, and <string> is described
in section 11.8. <special form> stands for one of the special forms whose syn-
tax is described in section 11.1. For uniformity the other kinds of expressions

are also described in that section as though they were special forms.

1.2 Semantics

A formal definition of the semantics of Scheme will be included in a
separate report. The detailed informal semantics of Scheme is the subject of
Part II. This section gives a quick review of Scheme's major characteristics.

Scheme is a statically scoped programming language. Each use of an identi-
fier is associated with a lexically apparent binding of that identifier. In this
respect Scheme is like Algol 60, Pascal, and C but unlike dynamically scoped
languages such as APL and traditional Lisp.

Scheme has latent as opposed to manifest types. Types are associated with
values (also called objects) rather than with variables. (Some authors refer to
languages with latent types as weally typed or dynamically typed languages.)
Other languages with latent types are APL, Snobol, and other dialects of Lisp.
Languages with manifest types (sometimes referred to as strongly typed or
statically typed languages) include Algol 60, Pascal, and C.

All objects created in the course of a Scheme computation, including all pro-
cedures and variables, have unlimited extent. No Scheme object is ever de-
stroyed. The reason that implementations of Scheme do not (usually!) run

...
%e 'e "

The Revised Revised Report on SchemeS

out of storage is that they awe permitted to reclaim the storage occupied by an
object if they can prove that the object cannot possibly matter to any future
computation. Other languages in which most objects have unlimited extent
include APL and other Lisp dialects.%

Implementations of Scheme are required to be properly tail-recursive. This
allows the execution of an iterative process in constant space, even if the
iterative process is described by a syntactically recursive procedure. Thus
with a tail-recursive implementation, iteration can be expressed using the
ordinary procedure-call mechanics, so that special iteration constructs are
useful only as syntactic sugar.

Scheme procedures are objects in their own right. Procedures can be created
dynamically, stored in data structures, returned as results of procedures, and
so on. Other languages with these properties iuiclude Common Lisp and ML.

Arguments to Scheme procedures are always passed by value, which means
that the actual argument expressions are evaluated before the proceduret gains
control, whether the procedure needs the result of the evaluation or not. ML,
C, and APL are three other languages that always pass arguments by value.
Lazy ML passes arguments by name, so that an argument expression is eval-
uated only if its value is needed by the procedure.

The Revised Revised Report on Scheme 9

-Part H: A catalog of Scheme

U1.0 Notational conventions

This part of the report is a catalog of the special forms and procedures
that make up Scheme. The special forms are described in section 11.1, and the
procedures are described in the following sections. Each section is organized
into entries, with one entry (usually) for each special form or procedure. Each
entry begins with a header line that includes the name of the special form or
procedure in boldface type within a template for the special form or a call
to the procedure. The names of the arguments to a procedure are italicized,
as are the syntactic components of a special form. A notation such as

expr ...
indicates zero or more occurrences of ezpr. Thus

7 expri exprt ...
indicates at least one expr. At the right of the header line one of the following
categories will appear:

special form
constant
variable
procedure
essential special form
essential constant
essential variable
essential procedure

A special form is a syntactic class of expressions, usually identified by a key-
word. A constant is something that is lexically recognizable as a constant.
A variable is a location in which values (also called objects) can be stored.
An identifier may be bound to a variable. Those variables that initially hold
procedure values are identified as procedures.

It is guaranteed that every implementation of Scheme will support the es-
sential special forms, constants, variables, and procedures. Implementations
are free to omit other features of Scheme or to add extensions, provided the
extensions are not in conflict with the language reported here.

Any Scheme value can be used as a boolean expression for the purpose of a
conditional test. As explained in section 11.2, most values count as true, but
a few-notably #I false-count as false. This manual uses the word 'true

The Revised Revised Report on Scheme 10

to refer to any Scheme value that counts as true in a conditional expression,
and the word "false' to refer to any Scheme value that counts as false.

When speaking of an error condition, this manual uses the phrase 'an error is
signalled" to indicate that implementations must detect and report the error.

If the magic word "signalled" does not appear in the discussion of an error,
then implementations are not required to detect or report the error, though
they are encouraged to do so. An error condition that implementations are
not required to detect is usually referred to simply as "an error'.

For example, it is an error for a procedure to be passed an argument that
the procedure is not explicitly specified to handle, even though such domain
errors are seldom mentioned in this manual. Implementations may extend a
procedure's domain of definition to include other arguments.

ip

I.;

The Revised Revised Report on Scheme 1

11.1. Special forms

Identifiers have two uses within Scheme programs. When an identifier
appears within a quoted constant (see quote), it is being used as data as
described in the section on symbols. Otherwise it is being used as a name.
There are two kinds of things that an identifier can name in Scheme: special

* forms and variables A special form is a syntactic class of expressions, and
an identifier that names a special form is called the keyword of that special
form. A variable, on the other hand, is a location where a value can be stored.
An identifier that names a variable is said to be bound to that location. The
set of all such bindings in effect at some point in a program is known as the
environment in effect at that point.

Certain special forms are used to allocate storage for new variables and to
bind identifiers to those new variables. The most fundamental of these binding
constructs is the lambda special form, because all other binding constructs can
be explained in terms of lambda expressions. The other binding constructs
are the let.* let*. letrec, internal definition (see define), rec. named-
lambda, and do special form.

Like Algol or Pascal, and unlike most other dialects of Lisp except for Com-
mon Lisp, Scheme is a statically scoped language with block structure. To
each place where an identifier is bound in a program there corresponds a re-
gion of the program within which the binding is effective. The region varies
according to the binding construct that establishes the binding; if the binding
is established by a lambda expression, for example, then the region is the
entire lambda expression. Every use of an identifier in a variable reference or
assignment refers to the binding of the identifier that established the inner-
most of the regions containing the use. If there is no binding of the identifier
whose region contains the use, then the use refers to the binding for the iden-
tifier that was in effect when Scheme started up, if any; if there is no binding
for the identifier, it is said to be unbound.

variable essential special form
An expression consisting of an identifier that is not the keyword of a ape-

cial form is a variable reference. The value obtained for the variable reference
is the value stored in the location to which variable is bound. It is an error
to reference an unbound variable.

e.: NX

7a- 7- -... - :V........

The Revised Revised Report on Scheme 12

(opetov operandl ...) essential special form

A list whose first element is not the keyword of a special form indicates a
procedure call. The operator and operand expressions are evaluated and the
resulting procedure is passed the resulting arguments. In contrast to other
dialects of Lisp the order of evaluation is not specified, and the operator
expression and the operand expressions are always evaluated with the same
evaluation rules.

(+ 3 4) -- > 7
((if Cfalse + *) 3 4) -- > 12

(quote datum) essential special form
'datum essential special form

Evaluates to datum. This notation is used to include literal constants in
Scheme code.

(quote a) -- a a
(quote #(a b c)) -- > #(a b)
(quote (+ 1 2)) -- > (.12)

(quote datum) may be abbreviated as 'datum. The two notations are equiv-
alent in all respects.

'(ab€) -- > #(ab c)'(+ 12) ->(+ 12)
'(quote a) -- > (quote a)
"a --> (quote a)

Numeric constants, string constants, character constants, vector constants,
and the constants # Itrue, #f false, and #Inull need not be quoted.

'"abc* -- abcH

Nabc" -- *abce
'145932 -- > 145932
145932 -- > 145932
S'CI tue -- > i#true
#Itrue -- > Citrue

(lambda (warl ...) expr) essential special form

Each var must be an identifier. The lambda expression evaluates to a pro-
cedure with formal argument list (varl ...) and procedure body expr. The
environment in effect when the lambda expression was evaluated is remem-
bered as part of the procedure. When the procedure is later called with some

~i

' < . &' -. %,*.....

*- -. -" . -" - . - . , , . . -"-";"""-',""-"- - ,,,,,"r"- ,," , "-' ;,, ."-"' ,' . ." ,,. ', ," , ,.-" '. ,' . "

The Revised Revised Report on Scheme is

actual arguments, the environment in which the lambda expression was eval-
uated will be extended by binding the identifiers in the formal argument list
to fresh locations, the corresponding actual argument values will be stored in
those locations, and ezpr will then be evaluated in the extended environment.
The result of ezpr will be returned as the result of the procedure call.

(lambda x) (+ x x)) -- > #<PROCEDURE>
((lambda x) (+ x x)) 4) -- > 8

(define reverse-subtract
(lambda (x y) (- y x))) -- > unspecified

(reverse-subtract 7 10) -- > 3 C:

(define foo
(let (x 4))
(lambda (y) (+ x y)))) -- > unspecified

(foo 6) -- 10

(lambda (earl ...) ezpri espro ...) essential special form
Equivalent to (lambda (earl ...) (begin expri exprf ...)). L.

(lambda ear ezpri ezpr* ...) essential special form
Returns a procedure that when later called with some arguments will

bind var to a fresh location, convert the sequence of actual arguments into a
list, and store that list in the binding of ear.

((lambda X x) 3 4 6 6) -- (4 5 6)
One last variation on the formal argument list provides for a so-called "rest
argument. If a space/dot/space sequence precedes the last argument in the
formal argument list, then the value stored in the binding of the last formal
argument will be a list of the actual arguments left over after all the other
actual arguments have been matched up against the formal arguments.

((labda (xy . a) z) 3 46) --> (5 6)

(if condition conseqmt altersaive) essential special form
(if condition consequent) special form

First evaluates condition. If it yields a true value (see section 11.2), then
consequent is evaluated and its value is returned. Otherwise alternative is
evaluated and its value is returned. If no alternstivee is specified, then the if
expression is evaluated only for its effect, and the result of the expression is
unspecified.

(if (>? 3 2) 'yes 'no) --> yes
(if 0? 2 3) 'yes 'zo) --) no
(if W ?32) (-32) (432)) -- I

Ut "

X. 7 6

% ." .% .
' #.'.e,,..-...v, o € €o,. ,. -., .4* ,P .,*'.P *. J"-- * , *s "r5' "*.4"S" .f %," ",":,, € ,""P"*% , ,YN :" , t,

- -- ., . _ 6 = ... _.= _. _ i- __ ... _ t..'.- o- .L.-. L .: j. a .a - -. a -. a t,: . .t .d d

The Revised Revised Report on Scheme 14

(cond clauel clausef ...) essential special form

Each clause must be a list of one or more expressions. The first expression
in each clause is a boolean expression that serves as the guard for the clause.

The guards are evaluated in order until one of them evaluates to a true value
(see section 11.2). When a guard evaluates true, then the remaining expressions
in its clase are evaluated in order, and the result of the last expression in the
selected clause is returned as the result of the entire expression. If the selected
clause contains only the guard, then the value of the guard is returned as the
result. If all guards evaluate to false values, then the result of the conditional
expression is unspecified.

(cond ((>? 3 2) 'greater)

((<? 3 2) 'less)) -- g greater

The keyword or variable else may be used as a guard to obtain the effect of
a guard that always evaluates true.

(cond ((>? 3 3) 'greater)
((<? 3 3) 'less)

(else 'equal)) -- > equal

The above forms for the clas es are essential. Some implementations support
yet another form of clase such that

(cond (fOrul -> fora2) ...)

is equivalent to

(let ((orml-result forul)

(tuzk2 (laubda) form2))
(thunkS (laubda) (cond ...))))

(it forl-result
((thunk2) forul-result)

(thunk3)))

(case ezpr clausel clause ...) special form

Each clause is a list whose first element is a selector followed by one or
more expressions. Each selector should be a list of values. The selectors are
not evaluated. Instead ezpr is evaluated and its result is compared against
successive selectors using the ueav procedure until a match is found. Then
the expressions in the selected cla e are evaluated from left to right and the
result of the last expression in the clause is returned as the result of the case
expression. If no selector matches then the result of the case expression is

*l-,.N - . *

m *

The Revised Revised Report on Scheme 15

unspecified.

(case (* 2 3)
((2 3 5 7) 'prime)
(1 4 6 8 9) 'composite)) -- > composite

(came (car '(c d))
((a) 'a)
((b) 'b)) -- > unspecified

The special keyword else may be used as a selector to obtain the effect of a
selector that always matches.

(case (car '(c Q)
((a a i o u) 'vowel)

(else 'consonant)) -- > consonant

(and ezprl ...) special form

Evaluates the ezprs from left to right, returning false as soon as one
evaluates to a false value (see section 11.2). Any remaining expressions are
not evaluated. If all the expressions evaluate to true values, the value of the
last expression is returned.

(and (-? 2 2) (>? 2 1)) -- > titrue
(and (-? 2 2) (? 2 1)) -- > *Ifalse

(and 1 2 'c '(f g)) "'> (f g)

(or expri ...) special form

Evaluates the ezprs from left to right, returning the value of the first expr
that evaluates to a true value (see section 11.2). Any remaining expressions
are not evaluated. If all expressions evaluate to false values, false is returned.

(or (2? 22) (>? 21)) -- > #ttrue
(or (2? 22 (W? 21)) -- > #Itrue
(or #ifalse #Ifalse 0Iialse) -- > #12alse

(or (memq 'b '(a b) (/ 3 0)) -- > (b c)

(let ((varl forml) ...) exprl exprR ...) essential special form

Evaluates the forms in the current environment (in some unspecified or-
der), binds the wars to fresh locations holding the results, and then evaluates
the ezprs in the extended environment from left to right, returning the value
of the last one. Each binding of a war has ezprl ezprf ... as its region.

(leot ((x 2) (y 3))

(x y)) -- > 6

',

-.'

_ ' : : " _-" ,. .'''. .' ' .' " '..: " ' ;-.''.-. .'''.,'. ',.'.-"":''.,.''.-,''.. -, *".-,-... " ' . -

,', -,r.e, , e---? -. :- , .--.--- ,..-.
-

.. .•.. -.-., .. _, , , .,

The Revised Revised Report on Scheme 16

(let ((x 2) (y 3))

(let ((foo (lambda (z) (x y z)))

(too 4))) -- > 9

let and letrec give Scheme a block structure. The difference between let
and letrec is that in a let the forms are not within the region of the vars

being bound. See letrec.

Some implementations of Scheme permit a 'named let' syntax in which

(let name ((varl forml) ...) ezprl ezprf...)

is equivalent to p.

((rec name (lambda (varl...) ezprl eprO...)) formi ...)

(let* ((varl formi) ...) ezpri exprf ...) special form

Similar to let, but the bindings are performed sequentially from left to
right and the region of a binding indicated by (var form) is that part of the
let* expression to the right of the binding. Thus the second binding is done
in an environment in which the first binding is visible, and so on.

(letrec ((varl forml) ...) ezprl ezpri ..) essential special form

S .

Binds the vaS to fresh locations holding undefined values, evaluates the
forms in the resulting environment (in some unspecified order), assigns to each
var the result of the corresponding form, evaluates the ezprs sequentially in
the resulting environment, and returns the value of the last ezpr. Each binding
of a var has the entire letrec expression as its region, making it possible to
define mutually recursive procedures. See let.

(letrec ((x 2) (y 3))
(letrec ((foo (lambda (z) (+ x y z))) (x 7))

(fto 4))) -- > 14

~4* ~.d ~ ~ v ~ . * *'* .

The Revised Revised Report on Scheme 1?

(letrec ((even?

(lambda (n) .
(if (zero? n)

Itrue
(odd? (-I+ n)))))

(odd?

(lambda (n)
(if (zero? n)

#Ifalse

(even? (-1+ n))))))

(even? 88))

-- > OItrue

One restriction on letrec is very important: it must be possible to evaluate
each form without referring to the value of a war. If this restriction is violated,

then the effect is undefined, and an er-or may be reported during evaluation
of the forms. The restriction is necessary because Scheme passes arguments
by value rather than by name. In the most common uses of letrec, all the
forms are lambda expressions and the restriction is satisfied automatically.

(rec tr ezpr) special form

Equivalent to (letrec ((tar ezpr)) tr). rec is useful for defining
self-recursive procedures. J.

(named-lambda (name vatrl ... ezpr ... 1 special form

Equivalent to (rec name (lambda (warl ...) ezpr ...))
a%

Rationale: Some implementatations may find it easier to provide good debug-
ging information when named-lambda is used instead of rec.

(define tar ezpr) essential special form

When typed at top level, so that it is not nested within any other expres-
sion, this form has essentially the same effect as the assignment (set I tar
ezpr) if tar is bound. If ear is not bound, however, then the define form will
bind tar before performing the assignment, whereas it would be an error to
perform a setI on an unbound identifier. The value returned by a define
form is not specified.

% %%

A-

.," ""..'• ". .'. -". . . . • • ". " ". " ". " , ." - - .. ".: . , " , ,

The RevIsed Revised Report on Scheme is

(define add3 (lambda (x) (+ x 3))) -- > unspecified
(add3 3) -- >6

(define first car) -- > unspecified
(first '(1 2)) -- > 1

The semantics just described is essential. Some implementations also allow

define expressions to appear at the beginning of the body of a lambda,
named-lambda, let, let*, or letrec expression. Such expressions are known
as internal definitions as opposed to the top level definitions described above.
The variable defined by an internal definition is local to the body of the
lambda, named-lambda, let, let*, or letrec expression. That is, var is
bound rather than assigned, and the region set up by the binding is the entire
body of the lambda, named-lambda, let, let*, or letrec expression. For
example,

(let ((x 5))
(define foe (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (* a b) a)))
(foe (x 3))) -- > 45

Internal definitions can always be converted into an equivalent letrec ex-
pression. For example, the let expression in the above example is equivalent
to

(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (a b) a))))
(foo (+ x 3))))

(define (varO varl ...) ezprl ezprS ...) special form
(define (form earl...) ezprl ezprf ...) special form

The first syntax, where varO is an identifier, is equivalent to

(define varO (rec varO (lambda (varl ...) exprl ezpr)))

The second syntax, where form is a list, is sometimes convenient for defining
a procedure that returns another procedure as its result. It is equivalent to

(define form (lambda (earl ...) ezprl ezpr...))."

(set! ear ezpr) essential special form

Stores the value of ezpr in the location to which ear is bound. ezpr is
evaluated but ear is not. The result of the set ! expression is unspecified.

(set! x 4) -- > unspecified
(1+ x) -- > 5

fC

I.

I|

The Revised Revised Report on Scheme 19

(begin ezprl expri ... esntial special form
Evaluates the ezps sequentially from left to right and returns the value

of the last expr. Used to sequence side effects such as input and output.

(begin (setl x 5)
(1+ x)) -- 6

Also

(begin (display 04 plus 1 equals ")
(display (1+ 4)))

prints 4 plus 1 equals 5
A number of special forms such as lambda and letrec implicitly treat their
bodies as begin expressions.

(sequence ezprl ezprS ...) special form
sequence is synonymous with begin.

Rationale: sequence was used in the Abelson and Sussman text, but it should
not be used ;n new code.

(do verspecs exit stmtl ...) special form
The do special form is an extremely general albeit complex iteration

macro. The varspeca specify variables to be bound, how they are to be initial-
ized at the start, and how they are to be incremented every on every iteration.
the general form looks like:

(do (varl initl atepl) ...)
(test ezprl ...)

stmtl ...)

Each var must be an identifier and each init and step must be expressions.
The init expressions are evaluated (in some unspecified order), the vats are
bound to fresh locations, the results of the init expressions are stored in the
bindings of the vas, and then the iteration phase begins.

Each iteration begins by evaluating test, if the result is false (see section 11.2),
then the stints are evaluated in order for effect, the steps are evaluated (in
some unspecified order), the results of the step expressions are stored in the
bindings of the vats, and the next iteration begins.

• , If test evaluates true, then the ezprs are evaluated from left to right and the
". value of the last ezpr is returned as the value of the do expression. If no ezprs

are present, then the value of the do expression is unspecified.

':: I.

S..

L5

) : : : :" :I. ::":::" :" " ": :" :: :::'::' :: :'?" ::" " :": " ::""::'-" ? ": :" ======================= === ==========================.

The Revised Revised Report on Scheme 20

The region set up by the binding of a war consists of the entire do expression
except for the ixif.

A step may be omitted, in which case the corresponding ear is not updated.
When the step is omitted the init may be omitted as well, in which case the
initial value is not specified.

a (do ((vec (make-vector 5))

(0 (1+)))
((-? 1 5) vec)
(vector-set vec i 1)) -- *(0 1 2 3 4)

(let ((x '(1 3 5 7 9)))
(do ((x x (cdr x))

(sun 0 (+ sun (car x))))
((null? x) sun))) -- > 25

The do special form is essentially the same as the do macro in Common
Lisp. The main difference is that in Scheme the identifier return is not
bound; programmers that want to bind return as in Common Lisp must do
so explicitly (see call-with-current-continuation).

'pattern special form
The backquote special form is useful for constructing a list structure when

most but not all of the desired structure is known in advance. If no commas
appear within the pattern, the result of evaluating 'pattern is equivalent (in
the sense of equal?) to the result of evaluating 'pattern. If a comma appears
within the pattern, however, the expression following the comma is evaluated
and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (a),
then the following expression must evaluate to a list; the opening and closing
parentheses of the list are then 'stripped away" and the elements of the list
are inserted in place of the comma/at-sign/expression sequence.

'(a ,(+ 1 2) ,Q(sap 1+ '(4 5 6)) b) -- > (a 3 5 6 7 b)
*(((oo ,(- 10 3)) .e(cdr '(c)) cons)) -- > (((foo 7) cons))

Scheme does not have any standard facility for defining new special forms.

Rationale: The ability to define new special forms creates numerous problems.
All current implementations of Scheme have macro facilities that solve those
problems to one degree or another, but the solutions are quite different and
it isn't clear at this time which solution is best, or indeed whether any of the
solutions are truly adequate. Rather than standardize, we are encouraging
implementations to continue to experiment with different solutions.

%.

The Revised Revised Report on Scheme 21
'1,

The main problems with traditional macros are: They must be defined to
the system before any code using them is loaded; this is a common source
of obscure bugs. They are usually global; macros can be made to follow
lexical scope rules as in Common Lisp's nacrolet, but many people find
the resulting scope rules confusing. Unless they are written very carefully,

macros are vulnerable to inadvertant capture of free variables; to get around
this, for example, macros may have to generate code in which procedure
values appear as quoted constants. There is a similar problem with keywords
if the keywords of special forms are not reserved. If keywords are reserved,
then either macros introduce new reserved words, invalidating old code, or
else special forms defined by the programmer do not have the same status as
special forms defined by the system.

I.

p..

p

I::

:;-

,pip

.o~

. --.- - . . . , -.- -

The Revised Revised Report on Scheme 22

11.2. Booleans

The standard boolean objects for truth and falsity are written as # 1 true
and # Ifalse. What really matters, though, are the objects that the Scheme
conditional expressions (if, cond, and, or, do) will treat as though they were
true or false. The phrase "a true value3 (or sometimes just "true") means
any object treated as true by the conditional expressions, and the phrase "a
false value' (or "false') means any object treated as false by the conditional
expressions. All of the conditional expressions are equivalent in that an object
treated as false by any one of them is treated as false by all of them, and
likewise for true values.

Of all the standard Scheme values, only # I false and the empty list count as
false in conditional expressions. *Itrue, pairs (and therefore lists), symbols,
numbers, strings, vectors, and procedures all count as true.

.

The empty list counts as false for historical reasons only, and programs should
not rely on this because future versions of Scheme will probably do away with
this nonsense.

Programmers accustomed to other dialects of Lisp should beware that Scheme
has already done away with the nonsense that identifies the empty list with
the symbol nil.

Ifalse essential constant
. I flalse is the boolean value for falsity. The U Ifalse object is self-

evaluating. That is, it does not need to be quoted in programs.

'# I false -- > #!false
I false -- > U!false

Itrue essential constant
I true is the boolean value for truth. The #I true object is self-evaluating,

and does not need to be quoted in programs.

(not obj) essential procedure
Returns #1 true if obi is false and returns It false otherwise.

nil variable
t variable

As a crutch for programmers accustomed to other dialects of Lisp, some
implementations provide variables nil and t whose initial values are #I null

*

.' .1

• " " . ". "• • " "- "- * . •. - • - 5' .. " -". " " "- °• - o" -".-°. ". '. -" "... -"- °-o . ," - -t/ --. -. ". *. " e d .

The Revised Revised Report on Scheme 33-

and # 1 true respectively. These variables should not be relied upon in new
code.

.a,:

The Revised Revised Report on Scheme 24

HI.3. Equivalence predicates

A predicate is a procedure that always returns #I true or I l alse. Of the
equivalence predicates described in this section, eq? is the most discriminating
while equal? is the most liberal. eqv? is very slightly less discriminating
than eq?.

(eq? objil obj2) essential procedure

Returns #1 true if obi is identical in all respects to objf, otherwise re-
turns #I false. If there is any way at all that a user can distinguish obi
and obj2, then eq? will return #f false. On the other hand, it is guaranteed
that objects maintain their identity despite being fetched from or stored into
variables or data structures.

The notion of identity used by eq? is stronger than the notions of equivalence
used by the eqv? and equal? predicates. The constants V true and *If alse
are identical to themselves and are different from everything else, except that
in some implementations the empty list is identical to #Ifalse for historical
reasons. Two symbols are identical if they print the same way (except that
some implementations may have "uninterned symbols" that violate this rule).
For structured objects such as pairs and vectors the notion of sameness is
defined in terms of the primitive mutation procedures defined on those objects.
For example, two pairs are the same if and only if a set-carI operation on
one changes the car field of the other. The rules for identity of numbers are
extremely implementation-dependent and should not be relied on.

Generally speaking, the equal? procedure should be used to compare lists,
vectors, and arrays. The char-? procedure should be used to compare char-
acters, the string-? procedure should be used to compare strings, and the
-? procedure should be used to compare numbers. The eqv? procedure is
just like eq? except that it can be used to compare characters and exact
numbers as well. (See section 11.6 for a discussion of exact numbers.)

(eq? 'a 'a) -- > #ltrue
(eq? 'a 'b) -- > #Ifalse
(eq? '(a) '(a)) -- > unspecified

(eq? "a" "a") -- > unspecified
a. (eq? 2 2) -- > unspecified
% (eq? (cons 'a 'b) (cons 'a 'b)) -- > #lfalse

(let ((x (read)))

(eq? (cdr (cons 'b x)) x)) -- > #ltrue

..-- - .- -.., -........... .,..---....** .. '.'*. ,..". .. ' " .',.-.-.-,--.-. .".,-. .',- -

' ',-''-.''.- .''- ;.".-',.. ° .%"*% .~ "'-", - " "%.'..,". ."-"% ." '," ". ' ,' - a-,- ".": " .* A " * ",A" ' ' ' "

The Revised Revised Report on Scheme 25

(eqv? objl obj2) essential procedure
eqv? is just like eq? except that if objil and obj2 are exact numbers then

eqv? is guaranteed to return #1 true if objil and obj2 are equil according to
the -? procedure.

(eq? 100000 100000) -- > unspecified

(eqv? 100000 100000) -- > #1true

See section 11.6 for a discussion of exact numbers.

(equal? objil obj) essential procedure
Returns C true if objil and obj* are identical objects or if they are equiv-

alent numbera, lists, characters, strings, or vectors. Two objects are generally
considered equivalent if they print the same. equal? may fail to terminate if
its arguments are circular data structures.

(equal? 'a 'a) -- > #ttrue
(equal? '(a) '(a)) -- > #Itrue

(equal? '(a (b) c) '(a (b) c)) -- > #Itrue
(equal? "abc" "abc") -- > #Itrue

(equal? 2 2) -- > #1true
(equal? (make-vector 5 'a)

(make-vector 6 'a)) -- > Oltrue

4 "'S.

'

I

.4

The Revised Revised Report on Scheme 26

11.4. Pairs and lists
S.,

Lists are Lisp's--and therefore Scheme'&--characteristic data structures.

The empty list is a special object that is written as an opening parenthesis

followed by a closing parenthesis: 0 The empty list has no elements, and its
length is zero. The empty list is not a pair.

Larger lists are built out of pairs. A pair (sometimes called a "dotted pair")
is a record structure with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure named cons. The car and cdr
fields are accessed by the procedures car and cdr. The car and cdr fields are
assigned by the procedures set-carl and set-cdrl. r

The most general notation used for Scheme pairs is the 'dotted' notation
(eI . e) where eI is the value of the car field and c2 is the value of the
cdr field. For example (4 . 5) is a pair whose car is 4 and whosecdr is 5.

The dotted notation is not often used, because more streamlined notations
exist for the common case where the cdr is the empty list or a pair. Thus (ei
0) is usually written as (cl), and (el . (S . cS)) is usually written
as (ci ci . cS). Usually these special notations permit a structure to be
written without any dotted pair notation at all. For example

(a . (b . (c . (d . (e. ()1)))

would normally be written as (a b c d e). "

When all the dots can be made to disappear as in the example above, the 5.

entire structure is called a proper list. Proper lists are so common that when
people speak of a list, they usually mean a proper li.,t. An inductive definition:

0 The empty list is a proper list.

* If plist is a proper list, then any pair whose cdr is plist is also a proper
list.

* There are no other proper lists.

A proper list is therefore either the empty list or a pair from which the empty
list can be obtained by applying the cdr procedure a finite number of times.
Whether a given pair is a proper list depends upon what is stored in the cdr
field. When the set-cdrl procedure is used, an object can be a proper list

-N,

The Revised Revised Report on Scheme 27

one moment and not the next:

(define x '(a b c)) -- > unspecified

(define y x) -- > unspecified

y -- > (a b c)
* (set-cdr! x 4) -- > unspeified

X -- > (a . 4)
(eq? x y) -- > #itrue
y -- > (a . 4)

A pair object, on the other hand, will always be a pair object.

It is often convenient to speak of a homogeneous (proper) list of objects of
some particular data type, as for example (1 2 3) is a list of integers. To
be more precise, suppose D is some data type. (Any predicate defines a data
type consisting of those objects of which the predicate is true.) Then
0 The empty list is a list of D.
* If plit is a list of D, then any pair whose cdr is pli8t and whose car is an

element of the data type D is also a list of D.
. There are no other lists of D.

(pair? o6l) essential procedure
Returns #Itrue if ob is a pair, otherwise returns I false.

(pair? '(a . b)) -- > Citrue
(pair? '(a b)) -- > Citrue
(pair? '0) --> #alse

(pair? '#(a b)) --> #ifalse

(cons oel obg) essential procedure
Returns a newly allocated pair whose car is obji and whose cdr is obj*.

The pair is guaranteed to be different (in the sense of eq?) from every existing
object.

(cons 'a '0) -- > (a)
(cons '(a) '(b c d)) -- > ((a) b c d)
(cons "a" '(b c)) -- > ("a" b)
(cons 'aS) -- > (a .3)
(cons '(a b) 'c) -- > ((a b) .)'

o.-. ,- .,*.-,.-.-.. .-. % . ,........,.. . ,.... , ,-.,,.,.--..... .. * 5-, 4,

• ,. ' .%,. ' .' .. '% % '..' ,' .' .'%',, . . ' . '.' ',, ' , ' ' ' ,,. . .. '. .' '.', -'- ' -. • - -, S-% ,- , -

The Revised Revised Report oan Scheme 28

(car pair) essential procedure
Returns the contents of the car field of pair. pair must be a pair. Note

that it is an error to take the car of the empty list.
(car '(abc)) -- > a
(car '((a) bcd)) -- > (a)
(car '(1 .2)) 1
(car '0) -- > error

(cdr pair) essential procedure
Returns the contents of the cdr field of pair. pair must be a pair. Note

that it is an error to take the cdr of the empty list.

(cdr '((a) b c d)) -- > (b c d)
(cdr '(1. 2)) -- >2
(cdr '0) -- > error

(set-car! pair oj) essential procedure

*" Stores obj in the car field of pair. pair must be a pair. The value returned
by set-carl is unspecified. This procedure can be very confusing if used
indiscriminately.

,.,

(set-cdrl pair obj) essential procedure
Stores obj in the cdr field of pair. pair must be a pair. The value returned

.1 by set-cdrl is unspecified. This procedure can be very confusing if used
indiscriminately.

(caar pair) essential procedure
(cadr pair) essential procedure
(ar pair) essential procedure
(cddr pair) essential procedure
(caaar pair) essential procedure
(caadr pair) essential procedure
(cadar pair) essential procedure
(caddr pair) essential procedure
(cdaar pair) essential procedure
(cdadr pair) essential procedure
(cddar pair) essential procedure
(cdddr pair) essential procedure ,
(caaaar pair) essential procedure
(caaadr pair) essential procedure
(caadar pair) essential procedure

It

.4

The Revised Revised Report on Scheme 29

(caaddr pair) essential procedure
(cadaar pair) essential procedure
(cadadr pair) essential procedure
(caddar pair) essential procedure
(cadddr pair) essential procedure
(cdaaar pair) essential procedure
(cdaadr pair) essential procedure
(cdadar pair) essential procedure
(cdaddr pair) essential procedure
(cddaar pair) essential procedure
(cddadr pair) essential procedure
(cdddar pair) essential procedure .
(cddddr pair) essential procedure

These procedures are compositions of car and cdr, where for example
caddr could be defined by

(define caddr (lambda (x) (car (cdr (cdr x)))))

0 (essential constant
#nuiI constant

' 0 and #1null are notations for the empty list. The *Inull notation
does not have to be quoted in programs. The) notation must be quoted in
programs, however, because otherwise it would be a procedure call without a
expression in the procedure position.

Rationale: Because many current Scheme interpreters deal with expressions
as list structures rather than as character strings, they will treat an unquoted
() as though it were quoted. It is entirely possible, however, that some
implementations of Scheme will be able to detect an unquoted) as an error.

(null? obj) essential procedure
Returns #true if obj is the empty list, otherwise returns I flalse.

(nost obi ...) essential procedure
Returns a proper list of its arguments.

(list 'a (4 3 4) ') -- > (a 7)

.

". 9.

,o' ~. . .. * - .*.. , •. . . ' ".. .*:, .*-~.- . *-*,' *-,'.. . -,- - - .* . . * , ", . ," ,n -' ' - .. e -.- -

The Revised Revised Report on Scheme 30

(length plist) essential procedure
Roturms the length of pliet, which must be a proper list.

(length '0) ->0

(length '(a b c) - 3
(length '(a, (b) (c d.))) ->3

* (append plt pListg) essential procedure
(append plit ..)procedure

All plists should be proper lists. Roturns a list consisting of the elements
of the first plit followed by the elements of the other pliets.

(append '(x) '(y)) U- (xy)
(append '(a) '(b c di)) -> (a b c d)

(append '(a (b)) '((c))) -- (a (b) (c)

(appendS plist ..)procedure

Like append but may side effect all but its last argument.

(reverse plist) procedure
pliat must be a proper list. Returns a list consisting of the elements of

pliet in reverse order.

(reverse '(a b c)) (- c b a)
(reverse '(a (b 0) d (e M1))) -- (fC)) d (b c) a)

(lint-ref z a) procedure
Returns the car of (list-tail z a).

(list-tail z a) procedure

Returns the sublist of z obtained by omitting the first a elements. Could
be defined by

(defin, list-tail

(lambda (x n)
(it (zero? n)

x

(list-tail (cdr x) C-n MM))

The Revised Revised Report on Scheme 31

(last-pair x) procedure

Roturms the last pair in the nonempty list x. Could be defined by

(define last-pair V

* (lambda Wx
(if (pair? (cdr x))

(last-pair (cdr x))

(maemq Obi pliat) essential procedure
(memav obi pliat) essential procedure
(3caember obi plst) essential procedure

Finds the first occurrence of obi in the proper list pliat and returns the
first sublist of pliat beginning with obj. If obi does not occur in pliet, returns
If false. memq uses eq? to compare o bi with the elements of pliat, while menv

uses eqv? and member uses equal?.

(meaq 'a '(a b 0) - (a b c)
(memq lb '(a b c) - (b c)
(memq 'a '(b c d)) ->*Ifalse

(memq (list 'a) '(b (a) 0) - #Jfalse
(memq 101 '(100 101 102)) - > unspecified
(memv 101 '(100 101 102)) -> (101 102)
(member (list 'a) '(b (a) c)) -> ((a) c)

(assq obj cat) essntial procedure
(assv obi adiet) essential procedure
(assoc Ob1 cait) essential procedure

ous~t must be a proper list of pairs. Finds the first pair in alist whose car
field is obj and returns that pair. If no pair in cat has obj as its car, returns
#If false. assq uses eq? to compare obj with the car fields of the pairs in
adiet, while assv uses eqv? and assoc uses equal?.

(assq 'a '((a 1) (b 2) (c 3) -- (a 1)
(assq 'b '((a 1) (b 2) (c 3) -- (b 2)
(assq 'd '((a 1) (b 2) (c 3))) -- f#falso
(assq (list 'a)

'(((a)) (Wb) ((c)))) -- #false
(aasq 5 '((3) (5 7) (11 13))) -> unspecified
(assv 5 '((2 3) (5 7) (11 13))) -> (5 7)
(assoc (list 'a)

((b)

-----

The Revised Revised Report on Scheme 82

Rationale: nenq. mear. member, assq. assv, and assoc do not have ques-
* tion marks in their names because they return useful values rather than just

. # I true. ;

% % %

'.* .

.
"

,_
.

I.
r

ft-

:" " ' " " '"...' ., , - ,'/ ' . , / ' . ,. .' e ' . , .' ,. " -. .."-. .a q e, .

The Revised Revised Report on Scheme 33

11.5. Symbols

Symbols are objects whose usefulness rests entirely on the fact that two

symbols are identical (in the sense of eq?) if and only if their names are spelled
the same way. This is exactly the property needed to represent identifiers in
programs, and so most implementations of Scheme use them internally for
that purpose. Programmers may also use symbols as they use enumerated
values in Pascal.

The rules for writing a symbol are the same as the rules for writing an identifier
(see section 1.2). As with identifiers, different implementations of Scheme use
slightly different rules, but it is always the case that a sequence of characters
that contains no special characters and begins with a character that cannot
begin a number is taken to be a symbol; in addition +, - 1+, and -1+ are
symbols.

The case in which a symbol is written is unimportant. Some implementations "
of Scheme convert any upper case letters to lower case, and others convert
lower case to upper case.

It is guaranteed that any symbol that has been read using the read procedure
and subsequently written out using the write procedure will read back in as
the identical symbol (in the sense of eq?). The string->symbol procedure,
however, can create symbols for which this write/read invariance may not hold
because their names contain special characters or letters in the non-standard
case.

Rationale: Some implementations of Lisp have a feature known as "slashifica-
tion' in order to guarantee write/read invariance for all symbols, but histor-
ically the most important use of this feature has been to compensate for the
lack of a string data type. Some implementations have "uninterned symbols,
which defeat write/read invariance even in implementations with slashifica-
tion and also generate exceptions to the rule that two symbols are the same if
and only if their names are spelled the same. It is questionable whether these
features are worth their complexity, so they are not standard in Scheme.

(symbol? obj) essential procedure
Returns #I true if obj is a symbol, otherwise returns #Ifalse. a.:

(symbol? 'foo) --> #1true
(symbol? (car '(a b))) --> #Itrue a..

(symbol? "bar") -- > #Ifalse

* %

* pa,

"." ' 2 ".2,""."".' "0 ","".''",'"" 2 :" " ", " '..%...,,, . . '. '... ., ,.. ' ... " .', .''.'.."-.",,' ., .,"..' " .', 5 , ," "' "' "' " ". . "

".'- *J" -.- " *,"'-

* .,.~t .t . . N - -T7.

.0The Revised Revised Report on Scheme 34

(symbol->string symbol) essential procedure
Returns the name of symbol as a string. symbol->string performs no

case conversion. See string->syabol. The following examples assume the
read procedure converts to lower case:

(symbol->string 'flying-fish) - -> "flying-fish"
(symbol->string 'Martin) - -> "Martin"
(symbol->string
(string->symbol "Malvina")) -- > "tdalvina"

(strng->symbol string) essential procedure
Returns the symbol whose name is string. string->symbol can create

symbols with special characters or letters in "he non-standard case, but it is
usually a bad idea to create such symbols because in some implementations
of Scheme they cannot be read as themselves. See symbol->string.

'mISSISSIppi -- > Mississippi

(string->symbol OnISSISSIppi") -- > MISSISSIppi

(eq? 'bitBIt
(string->symbol "bitBlt")) -- > unspecified

(.q? 'JollyWog
(string->symbol

(symbol->string 'JallyWog))) -- #true

(stringe?
"K. Harper. N.D."
(symbol->string
(string->symbol

OK. Harper. M.D.")) > *true

The Revised Revised Report on Scheme 35

11.6. Numbers

* Numerical computation has traditionally been neglected by the Lisp corn-
munity. Until Common Lisp there has been no carefully thought out strategy

* for organizing numerical computation, and with the exception of the MacLisp
system there has been little effort to execute numerical code efficiently. We
applaud the excellent work of the Common Lisp committee and we accept
many of their recommendations. In some ways we simplify and generalize
their proposals in a manner consistent with the purposes of Scheme.

Scheme's numerical operations treat numbers as abstract data, as independent
of their representation as is possible. Thus, the casual user should be able to
write simple programs without having to know that the implementation may
use fixed-point, floating-point, and perhaps other representations for his data.
Unfortunately, this illusion of uniformity can be sustained only approximately

-the implementation of numbers will leak out of its abstraction whenever the
user must be in control of precision, or accuracy, or when he must construct
especially efficient computations. Thus the language must also provide escape
mechanisms so that a sophisticated programmer can exercise more control over
the execution of his code and the represntation of his data when necessary.

It is important to distinguish between the abstract numbers, their machine
representations, and their written representations. We will use mathematical
words such as NUMBER, COMPLEX, REAL, RATIONAL, and INTEGER
for properties of the abstract numbers, names such as FIXNUM, BIGNUM,
RATNUM, and FLONUM for machine representations, and names like TNT,
FIX, FLO, SCI, RAT, POLAR, and RECT for input/output formats.

Numbers

A Scheme system provides data of type NUMBER, which is the most
general numerical type supported by that system. NUMBER is likely to be
a complicated union type implemented in terms of FIXNUMS, BIGNUMS,
FLONUMS, and so forth, but this should not be apparent to a naive user.
What the user should see is that the usual operations on numbers produce
the mathematically expected results, within the limits of the implementation.
Thus if the user divides the exact number 3 by the exact number 2, he should
get something like 1.5 (or the exact fraction 3/2). If he adds that result to
itself, and the implementation is good enough, he should get an exact 3.

Mathematically, numbers may be arranged into a tower of subtypes with
projections and injections relating adjacent levels of the tower:

%- % %

It - W J

The Revised Revised Report on Scheme 36

4 NUMBER
COMPLEX
REAL h

RATIONAL
INTEGER

We impose a uniform rule of downward coercion-a number of one type is
also of a lower type if the injection (up) of the projection (down) of a number
leaves the number unchanged. Since this tower is a genuine mathematical
structure, Scheme provides predicates and procedures to access the tower.

Not all implementations of Scheme must provide the whole tower, but they
must implement a coherent subset consistent with both the purposes of the
implementation and the spirit of the Scheme language.

Exactness

Numbers are either EXACT or INEXACT. A number is exact if it was
derived from EXACT numbers using only EXACT operations. A number is
INEXACT if it models a quantity known only approximately, if it was derived
using INEXACT ingredients, or if it was derived using INEXACT operations.
Thus INEXACTness is a contagious property of a number. Some operations,
such as the square root (Of non-square numbers) must be INEXACT because *

of the finite precision of our representations. Other operations are inexact
because of implementation requirements. We emphasize that exactness is
independent of the position of the number on the tower. It is perfectly possible
to have an INEXACT INTEGER or an EXACT REAL; 355/113 may be an
EXACT RATIONAL or it may be an INEXACT RATIONAL approximation
to pi, depending on the application.

Operationally, it is the system's responsibility to combine EXACT numbers
using exact methods, such as infinite precision integer and rational arithmetic,
where possible. An implementation may not be able to do this (if it does
not use infinite precision integers and rationals), but if a number becomes
inexact for implementation reasons there is likely to be an important error
condition, such as integer overflow, to be reported. Arithmetic on INEXACT
numbers is not so constrained. The system may use floating point and other
ill-behaved represntation strategies for INEXACT numbers. This is not to
say that implementors need not use the best known algorithms for INEXACT
computations-only that approximate methods of high quality are allowed.
In a system that cannot explicitly distinguish exact from inexact numbers

The Revised Revised Report on Scheme 37

the system must do its best to maintain precision. Scheme systems must not
burden users with numerical operations described in terms of hardware and
operating-system dependent representations such as FIXNUM and FLONUM,
however, because these representation issues are hardly ever germane to the
user's problems.

We highly recommend that the IEEE 32-bit and 64-bit floating-point stan-
dards be adopted for implementations that use floating-point representations
internally. To minimize loss of precision we adopt the following rules: If an
implementation uses several different sizes of floating-point formats, the re-
sults of any operation with a floating-point result must be expressed in the
largest format used to express any of the floating-point arguments to that
operation. It is desirable (but not required) for potentially irrational opera-
tions such as sqrt, when applied to EXACT arguments, to produce EXACT
answers whenever possible (for example the square root of an exact 4 ought
to be an exact 2). If an EXACT number (or an INEXACT number repre-
sented as a FIXNUM, a BIGNUM, or a RATNUM) is operated upon so as to
produce an INEXACT result (as by sqrt), and if the result is represented as
a FLONUM, then the largest available FLONUM format must be used; but if
the result is expressed as a RATNUM then the rational approximation must
have at least as much precision as the largest available FLONUM.

Numerical operations

Scheme provides the usual set of operations for manipulating numbers. In
general, numerical operations require numerical arguments. For succintness
we let the following meta-symbols range over the indicated types of object in
our descriptions, and we let these meta-symbols specify the types of the argu-
ments to numeric operations. It is an error for an operation to be presented
with an argument that it is not specified to handle.

obi any object
z, z1, ... zi... complex, real , rational, integer
z, zl, ... ri, ... real, rational, integer
q, q1, ... qi, ... rational, integer
ni, , i,... integer

(number? obi) essential procedure
(complex? obi) essential procedure

e (real? obj) essential procedure
(rational? obj) essential procedure
(integer? obj) essential procedure

..- .- - • • .- - -. -.- . . .- - . .- ,. -. --- -. .. -.-.-.-. -. . -. -.-. . -. . . .-......-.
Z * *;.

The Revised Revised Report on Scheme 38

These numerical type predicates can be applied to any kind of argument.
They return true if the object is of the named type. In general, if a type
predicate is true of a number then all higher type predicates are also true
of that number. Not every system supports all of these types; for example,
it is entirely possible to have a Scheme system that has only INTEGERs.
Nonetheless every implementation of Scheme must have all of these predicates.

(zero? z) essential procedure
(positive? z) essential procedure
(negative?) essential procedure
(odd? n) essential procedure
(even? n) essential procedure
(exact? 4 essential procedure
(inexact? z) essential procedure

These numerical predicates test a number for a particular property, re-
turning # I true or # ! false.

(z1 z2) essential procedure
z(1? z2) essential procedure

(< z: z2) essential procedure
(<? z: z2) essential procedure
(> z: X2) essential procedure
(>? z1 X2) essential procedure
(<= z1 z2) essential procedure
(<=? z1 z2) essential procedure
(>= x1 2) essential procedure
(>=? z1 z2) essential procedure

These numerical comparison predicates have redundant names (with and
"- without the terminal '?") to make all user populations happy. Some im-

plementations allow them to take many arguments, as in Common Lisp, to
facilitate range checks. These procedures return #! true if their arguments
are (respectively): numerically equal, monotonically increasing, monotoni-
cally decreasing, monotonically nondecreasing, or monotonically nonincreas-
ing. Warning: On INEXACT numbers the equality tests will give unreliable
results, and the other numerical comparisons will be useful only heuristically;
when in doubt, consult a numerical analyst.

(max 1 z2) essential procedure(max :1 2 ...) procedure

(main x1 z2) essential procedure
(miin x1 z...) procedure

C.. ... *. ,,' ,,......*.

The Revised Revised Report on Scheme 39

Returns the maximum or minimum of its arguments, respectively.
(+ zi z) essential procedure

(+ zl ...) procedure
(* z1 z2) essential procedure S.

(S zi ...) procedure

These procedures return the sum or product of their arguments.

(+ 3 4) -- > 7

(+ 3) -- > 3() -- > 0 :
0 %'

(*4) -- > 4
(*) -- > 1 ,'

(- Z :2) essential procedure
(- z1 :2...) procedure

S(/zlz) essential procedure
(V z1 z2 ...) procedure

With two or more arguments, these procedures return the difference or
(complex) quotient of their arguments, associating to the left. With one
argument, however, they return the additive or multiplicative inverse of their

argument.

(-3 4) -- > -1
(-345) -- > -8

(-3) -- > -3
(3 4 5) -- > 3/20

(/3) -- > 1/3

(1+ Z) procedure
(-1+ z) procedure

These procedures return the result of adding 1 to or subtracting 1 from
their argument.

(abs) essential procedure

Returns the magnitude of its argument.

(abs-) -- > 7

(abs -3+41) -- > ,

(quotient nI n) essential procedure
(remainder n1 n2S) essential procedure
(modulo n1 n2) procedure

In general, these are intended to implement number-theoretic (integer)

division: For positive integers n1 and n2 , if n3 and n 4 are integers such that

• . ,. -.. -. '..-.. .. %.'-.-.. - ..- "..'..........-.. - . . /

The Revised Revised Report on Scheme 40

nl = n2 n3 + n4 and 0 < n4 < n2, then

(quotient nl al) -- > ns

(remainder n1 n2) - n-> 4
(modulo ul n2) -- > n4

The value returned by quotient always has the sign of the product of its

arguments. Remainder and modulo differ on negative arguments as do the
Common Lisp rem and mod procedures-the remainder always has the sign
of the dividend, the modulo always has the sign of the divisor:

(modulo 13 4) -- > 1
(remainder 13 4) -- 1
(modulo -13 4) -- > 3
(remainder -13 4) -- > -1
(modulo 13 -4) -- > 3

(remainder 13 -4) -- > 1
(modulo -13 -4) -> -1

(remainder -13 -4) -- > -1

(gcd n1 ...) procedure

(lcm n...) procedure

These procedures return the greatest common divisor or least common

multiple of their arguments. The result is always non-negative.

(gcd 32 -36) -- > 4
(gcd) -- > 0

(1cm 32 -36) -- > 288
(1cm) -- > 1

(floor z) procedure

(ceiling z) procedure
(truncate z) procedure

(round z) procedure
(rationalize z y) procedure

(rationalize z) procedure

These procedures create integers and rationals. Their results are not
EXACT-in fact, their results are clearly INEXACT, though they can be

made EXACT with an explicit exactness coercion.

Floor returns the largest integer not larger than z. Ceiling returns the

smallest integer not smaller than z. Truncate returns the integer of maximal
absolute value not larger than the absolute value of z. Round returns the r

The Revised Revised Report on Scheme 41

closest integer to z, rounding to even when x is halfway between two integers.
With two arguments, rationalize produces the best rational approximation
to z within the tolerance specified by i. With one argument, rationalize
produces the best rational approximation to z, preserving all of the precision
in its representation.

(exp z) procedure
(log z) procedure
(expt z1 z2) procedure

(sqrt) procedure
(sin z) procedure
(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan Z1 Z2) procedure

These procedures are part of every implementation that supports real
numbers. Their meanings conform with the Common Lisp standard. (Imple-
mentors should be careful of the branch cuts if complex numbers are allowed.)

(make-rectangular z1 z2) procedure
(make-polar z3 z4) procedure
(real-part z) procedure

(Imag-part z) rocedure

(magnitude z) procedure
(angle z) procedure

These procedures are part of every implementation that supports complex
numbers. Suppose ZI, x2, x3, and z4 are real numbers and z is a complex
number such that

z = X1 + Z21 = z3' Iz4

Then make-rectangular and make-polar return z, real-part returns zi,
inag-part returns z2, magnitude returns z, and angle returns X4.

(exact->lnexact z) procedure
(nexact->exact) procedure

exact->inexact returns an INEXACT representation of z, which is a
fairly harmless thing to do. inexact->exact returns an EXACT represen-
tation of z. Since the law of 'garbage in, garbage out" remains in force,
inexact->exact should not be used casually.

,I

The Revised Revised Report on Scheme 42

Numerical Input and Output

Scheme allows all the traditional ways of writing numerical constants,

though any particular implementation may support only some of them. These
syntaxes are intended to be purely notational; any kind of number may be
written in any form that the user deems convenient. Of course, writing 1/7 as
a limited-precision decimal fraction will not express the number exactly, but
this approximate form of expression may be just what the user wants to see.

Scheme numbers are written according to the grammar described below. In
that description, z * means zero or more occurrences of z. Spaces never appear
inside a number, so all spaces in the grammar are for legibility. <empty> stands
for the empty string.

bit -- > 0 I 1
oct -- > 0 I 1 I 2 I 3 I 4 I 5 I 6 7
dit --> oct I 8 I 9
hit -- > dit Ia IbIc Ic d I

IA IB IC ID IE IF

radix2 -- > *b #3B
radix8 --> #o S 0 "

radlxlO --> <empty> [d I #D
radix16 -- > #x I #X
exactness --> <empty> [#1 i SI [#e SE
precision --> <empty> I ft I #S I #1 I #L

prefix2 -- > radix2 exactness precision

radix2 precision exactness
exactness radix2 precision

exactness precision radix2
precision radix2 exactness
precision exactness radix2

prefix8 --> radix8 exactness precision

radix8 precision exactness
exactness radix8 precision
exactness precision radix8
precision radix8 exactness
precision exactness radix8

... ,~ .. ,,..•,....... , , :....,....-.,...... . - ** .- , .. ,.,..-. .. ,-,,...... .. * ,........-*.- -. ,. -, ..- ,,.,,,- '
..................... ° .' .,",'...-................ .. ,o-.'. . ,,/

The Revised Revised Report on Scheme 43

prefixlO ->radixlO exactness precision
IradixlO precision exactness
Iexactness radixlO precision
Iexactness precision radixlO
Iprecision radixlO exactness
Iprecision exactness radixlO

prefixie - radixl6 exactness precision
IradixiC precision exactness
Iexactness radixl6 precision
Iexactness precision radixl6
Iprecision radixIG exactness
Iprecision exactness radixl6

sign -- > empty> I+ I-
suffix -><empty> I sign dit dit* IE sign dit dit*
ureal - >prefix2 bit bit* 8* suffix

Iprefix2 bit bit* 8*/bit bit* 8*suffix
Iprefix2 . bit bit* 8*suffix
Iprefix2 bit bit* .bit* 8* suffix
Iprefix2 bit bit* *.8*suffix

Iprefixe oct octe * suffix
Ipre-fix:8 oct oct* 8*/oct oct* ** suffix
IprefIx8 .oct oct* 8*suffix

Iprefix8 oct oct* .oct* 8* suffix
Iprefix8 oct oct* 8 .8*suffix

IprefixlO dit dits * suffix
IprefixlO dit dit* 8*/dit dit* 8* suffix
IprefixlO .dit dit* 8*suffix

IprefixlO dit dit* . dit* 8* suffix
IprefIx1O dit dit* 8*. * suffix

IprefixIC hit hit* 8*suffix
Iprefixl6 hit hit* 8*/hit hit* 8* suffix
IprefixiS . hit hit* 8*suffix
Iprefixl6 hit hit* .hit* 8* suffix
Iprefixl6 hit hit* 8* * suffix

real - -> sign ureal
number -- > real I real +ureal i I real -ureal i

IrealO6 real
The conventions used to print a number can be specified by a format, as
described later in this section. The system provides a procedure, number-

The Revised Revised Report on Scheme 44

>string, that takes a number and a format and returns as a string the printed
expression of the given number in the given format.

(number->strlng mumber format) procedure

This procedure will mostly be used by sophisticated users and in system
programs. In general, a naive user will need to know nothing about the
formats because the system printer will have reasonable default formats for
all types of NUMBERs. The system reader will construct reasonable default
numerical types for numbers expressed in each of the formats it recognizes.
If a user needs control of the coercion from strings to numbers he will use
string->number, which takes a string, an exactness, and a radix and produces
a number of the maximally precise applicable type expressed by the given
string.

(strlng->number string exactnes radix) procedure

The exactness is a symbol, either E (or EXACT) or I (or INEXACT). The
radix is also a symbol: B (or BINARY), 0 (or OCTAL), D (or DECIMAL), and X

S(or HEXADECIMAL). Returns a number of the maximally precise representation
expressed by the given string. It is an error if string does not express a number
according to the grammar presented above.

Formats

% Formats may have parameters. For example, the (SCI 5 2) format spec-
ifies that a number is to be expressed in Fortran scientific format with 5
significant places and two places after the radix point.

In the following examples, the comment shows the format that was used to
produce the output shown:

123 .123 -123 ; (int)
123456789012345678901234567 ; (int); a big one!
355/113 4355/113 -355/113 ; (rat)
.123.45 -123.45 ; (fix 2)
3.14159265368979 ; (fix 14)
3.14159265358979 ; (fio 15)
123.450 ; (fo 6)
-123.46e-i ; (sci 5 2)
123.3 123e-3 -123o-3 ; (@ci 30)
-1+21 ; (rect (int) (int))
1.261.570796 ; (polar (fix 1) (fio 7))

% ."!

* *d

The Revised Revised Report on Scheme 45

A numerical constant may be specified with an explicit radix by a prefix.
The prefixes are: #B (binary), #0 (octal), #D (decimal), #X (hex). A format
may specify that a number should be expressed in a particular radix. The
radix prefix may also be suppressed. For example, one may express a complex
number in polar form with the magnitude in octal and the angle in decimal
as follows:

#ol . 2#d1.670796327 ; (polar (fio 2 (radix o)) (fio (radix d)))
#ol.2Q1.570796327 ; (polar (fio 2 (radix o)) (fio (radix d s)))

A numerical constant may be specified to be either EXACT or INEXACT by
a prefix. The prefixes are: #I (inexact), #E (exact). An exactness prefix may
appear before or after any radix prefix that is used. A format may specify
that a number should be expressed with an explicit exactness prefix, or it may
force the exactness to be suppressed. For example, the following are ways to
output an inexact value for pi:

#355/113 ; (rat (exactness))
355/113 ; (rat (exactness s))
#13.1416 ; (fix 4 (exactness))

An attempt to produce more digits than are available in the internal machine
representation of a number will be marked with a "#" filling the extra digits.
This is not a statement that the implementation knows or keeps track of the
significance of a number, just that the machine will flag attempts to produce
20 digits of a number that has only 15 digits of machine representation:

" 3. 14158265358979##### ; (fio 20 (exactness a))

In systems with both single and double precision FLONUMs we may want
to specify which size we want to use to represent a constant internally. For
example, we may want a constant that has the value of pi rounded to the
single precision length, or we might want a long number that has the value
6/10. In either case, we are specifying an explicit way to represent an INEX-
ACT number. For this purpose, we may express a number with a prefix that
indicates short or long FLONUM representation:

#S3.14159266358979 ; Round to short - 3.141593
#L.6 ; Extend to long - .600000000000000

Details of formats

The format of a number is a list beginning with a format descriptor,
which is a symbol such as SCI. Following the descriptor are parameters used
by that descriptor, such as the number of significant digits to be used. Default
values are supplied for any parameters that are omitted. Modifiers may appear

.. .. % %. .

The Revised Revised Report on Scheme 46

next, such as the RADIX and EXACTNES descriptor. described below, which
themselves take parameters. The format descriptors are:

(INT)

Express as an integer. The radix point is implicit. If there are not
enough significant places then insignificant digits will be flagged. For example,
6.0238E23 (represented internally as a 7 digit FLONUM) would be printed as

(RAT n)

Express as a rational fraction. n specifies the largest denominator to be
used in constructing a rational approximation to the number being expressed.
If n is omitted it defaults to infinity.

(FIX n)

Express with a fixed radix point, n specifies the number of places to the
right of the radix point. ta defaults to the size of a single-precision FLONUM. If
there are not enough significant places, then insignificant digits will be flagged.
For example, 6.0238E23 (represented internally as a 7 digit FLONUM) would
be printed with a (FIX 2) format as 6023800########## #.8

(FLO n)

Express with a floating radix point. a specifies the total number of places
to be displayed. n defaults to the size of a single-precision FLONUM. If the
number is out of range, it is converted to (SCI). (FLO H) allows the system
to express a FLO heuristically for human consumption.

(SCI nM)

Express in exponential notation. n specifies the total number of places to
be displayed. n defaults to the size of a single-precision FLONUM. m specifies
the number of places to the right of the radix point. m defaults to n-1. (SCI
H) does heuristic expression.

(RECTr s)

Express as a rectangular form complex number. r and i are formats for
the real and imaginary parts respectively. They default to H).

(P)

The Revised Revised Report on Scheme 47

(POLAR m a)

Express as a polar form complex number. m and a are formats for the

magnitude and angle respectively. m and a default to (HEUR).

(HEUR)

Express heuristically using the minimum number of digits required to
get an expression that when coerced back to a number produces the original

machine representation. EXACT numbers are expressed as (INT) or (RAT).
INEXACT numbers are expressed as (FLO H) or (SCI H) depending on their
range. Complex numbers are expressed in (RECT). This is the normal default

of the system printer.

The following modifiers may be added to a numerical format specification:

(EXACTNESS s)

This controls the expression of the exactness label of a number. a indi-
cates whether the exactness is to be E (expressed) or S (suppressed). s defaults

to E. If no exactness modifier is specified for a format then the exactness is
by default not expressed.

(RADII a)

This forces a number to be expressed in the radix r. r may be the symbol

B (binary), 0 (octal), D (decimal), or X (hex). a indicates whether the radix

label is to be E (expressed) or S (suppressed). s defaults to E. If no radix
modifier is specified then the default is decimal and the label is suppressed.

d

* *& - . .

-~~~ 7 ~ ~ ~ ~ 7-. 67 77-' '- - - . * .

L,,.

The Revised Revised Report on Scheme 48

11.7 Characters

Characters are written using the #\ notation of Common Lisp. For ex-
ample:

#\a lower case letter
*\A ;upper case letter
.\ (; the left parentheses as a character

; the space character
#\space ; the preferred way to write a space
#\newline ; the newline character

Characters written in the #\ notation are self-evaluating. That is, they do
not have to be quoted in programs. The #\ notation is not an essential part
of Scheme, however. Even implementations that support the #\ notation for
input do not have to support it for output, and there is no requirement that
the data type of characters be disjoint from data types such as integers or
strings.

Some of the procedures that operate on characters ignore the difference be-
tween upper case and lower case. The procedures that ignore case have the
suffix "-ci' (for *case insensitive"). If the operation is a predicate, then the
'-ci* suffix precedes the '?' at the end of the name.

(char? obj) essential procedure

Returns #!true if obj is a character, otherwise returns #!false.
(char=? char1 chart) essential procedure
(char<? char1 chart) essential procedure
(char>? chari char2) essential procedure
(char<=? chari chart) essential procedure
(char>=? charI char2) essential procedure

Both chari and char2 must be characters. These procedures impose
a total ordering on the set of characters. It is guaranteed that under this
ordering:

* The upper case characters are in order. For example, (char<? #\A
#\B) returns #!true.

* The lower case characters are in order. For example, (char<? #\a #\b)
returns # true.

* The digits are in order. For example, (char<? 8\o #\9) returns # I true.
* Either all the digits precede all the upper case letters, or vice versa.

* Either all the digits precede all the lower case letters, or vice versa.

I.

.. . • _ % /' ~ . ,. . * - . - - . .. -. ° .. -'.- .

The Revised Revised Report on Scheme 49

Some implementations may generalize these procedures to take more than two
arguments, as with the corresponding numeric predicates.

(char-ct=? charl chart) procedure

(char-c<? charl chart) procedure
(char-cl>? charl chart) procedure

(char-cl<=? charl chart) procedure
(char-ci>=? charl chart) procedure

*: Both charl and chart must be characters. These procedures are similar to
char-? et cetera, but they treat upper case and lower case letters as the same.
For example, (char-c i-? *\A #\a) returns # true. Some implementations
may generalize these procedures to take more than two arguments, as with
the corresponding arithmetic predicates.

(char-upper-case? char) procedure

(char-lower-case? char) procedure
(char-alphabetic? char) procedure

(char-numeric? char) procedure
(char-whitespace? char) procedure

Char must be a character These procedures return # true if their argu-

ments are upper case, lower case, alphabetic, numeric, or whitespace char-
acters, respectively, otherwise they return #1false. The following remarks,
which are specific to the ASCII character set, are intended only as a guide.

The alphabetic characters are the 52 upper and lower case letters. The nu-
meric characters are the 10 decimal digits. The whitespace characters are tab,
line feed, form feed, carriage return, and space.

(char->Integer char) essential procedure

(integer->char n) essential procedure
Given a character, char->integer returns an integer representation of

the character. Given an integer that is the image of a character under char-
>integer, Integer->char returns a character. These procedures implement
order isomorphisns between the set of characters under the char<=? ordering

and the set of integers under the <-? ordering. That is, if

(char<-? a b) -- > #Itrue
(<-? z g) -- > #Itrue

and z and y. are in the range of char->integer, then

(<a? (char->integer a)

(char->integer)) -- > #ttrue

(char<=? (integer->char z)
(integer->char y)) -- > #itrue

*~ %.

,4€_M

The Revised Revised Report on Scheme 50

(char-upcase char) procedure
(char-dowiacase char) procedure

char must be a character. These procedures return a character char2
such that (char-c i-? char char2). In addition, if char is alphabetic, then
the result of char-upcase is upper case and the result of char-dowucase is
lower case.

v - % % -

--

The Revised Revised Report on Scheme 51

U.S. Strings

Strings are sequences of characters. In some implementations of Scheme
they are immutable; other implementations provide destructive procedures
such as string-set I that alter string objects.

Strings are written as sequences of characters enclosed within doublequotes
("). A doublequote can be written inside a string only by escaping it with a
backslash (\), as in

"The word \"Recursion\" has many different meanings."

A backslash can be written inside a string only by escaping it with another
backslash. Scheme does not specify the effect of a backslash within a string
that is not followed by a doublequote or backslash.

A string may continue from one line to the next, but this is usually a bad idea
because the exact effect varies from one computer system to another.

The length of a string is the number of characters that it contains. This
number is a non-negative integer that is fixed when the string is created. The
valid indexes of a string are the nonnegative integers less than the length of
the string. The first character of a string has index 0, the second has index

1, and so on.

In phrases such as "the characters of string beginning with index start and
ending with index end," it is understood that the index start is inclusive, and
the index end is exclusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the length of string,

then the entire string is referred to.

Some of the procedures that operate on strings ignore the difference between
upper and lower case. The versions that ignore case have the suffix "-ci"
(for "case insensitive"). If the operation is a predicate, then the "-ci" suffix
precedes the "?" at the end of the name.

(string? obj) essential procedure

Returns #1true if obi is a string, otherwise returns #Ifalse.

(string-nullstring) essential procedure

string must be a string. Returns #1 true if string has zero length, other-
wise returns #1false.

.9.
.9.

The Revised Revised Report on Scheme 52

(string=? stringi string2) essential procedure

(string-ci=? stringl stringf) procedure

Returns # true if the two strings are the same length and contain the

same characters in the same positions, otherwise returns #1false. string-

ci-? treats upper and lower case letters as though they were the same char-

acter, but string-? treats upper and lower case as distinct characters.

-(string<? etringi string) essential procedure
(string>? stringl string) essential procedure
(string<=? string string2) essential procedure

(string>=? stringl string2) essential procedure

(string-c<? stringi string2) procedure

(string-cl>? stringi string2) procedure
(string-ci<=? stringi string2) procedure

(string-ci>=? stringi string2) procedure

These procedures are the lexicographic extensions to strings of the corre-

sponding orderings on characters. For example, string<? is the lexicographic

ordering on strings induced by the ordering char<? on characters. Some

implementations may generalize these and the string-? and string-ci?
procedures to take more than two arguments.

(make-string n) procedure
(make-string n char) procedure

n must be a non-negative integer, and char must be a character. Returns
a newly allocated string of length n. If char is given, then all elements of

the string are initialized to char, otherwise the contents of the string are

unspecified.

(string-length string) essential procedure

Returns the number of characters in the given string.

(string-ref string n) essential procedure

n must be a nonnegative integer less than the string-length of string.

Returns character n using zero-origin indexing.

(substring string start end) essential procedure

string must be a string, and start and end must be valid indexes of string

with start <- end. Returns a newly allocated string formed from the characters

of string beginning with index start and ending with index end.

AL

4,.

.-.-.

.-- ,,... -

The Revised Revised Report on Scheme 53

(string-append etringl string2) essential procedure

(string-append etringi ...) procedure

Returns a new string whose characters form the catenation of the given
strings.

(string->llst string) essential procedure
(list->string chars) essential procedure

string->list returns a list of the characters that make up the given

string. list->string returns a string formed from the proper list of char-
acters chars. string->list and list->string are inverses so far as equal?
is concerned. Implementations that provide destructive operations on strings

should ensure that the results of these procedures are newly allocated objects.

(string-set! string n char) procedure

string must be a string, n must be a valid index of string, and char must
be a character. Stores char in element n of string and returns an unspecified

value.

(string-fll]! string char) procedure

Stores char in every element of the given string and returns an unspecified .

value.

(string-copy string) procedure

Returns a newly allocated copy of the given string.

(substring-fl]U! string start end char) procedure

Stores char in elements start through end of the given string and returns
an unspecified value.

(substring-move-rghtl 81 ml ni 82 m2) procedure

(substring-move-left! 81 ml ni s2 m2) procedure

81 and 82 must be strings, ml and n1 must be valid indexes of 81 with
ml <- nl and m2 must be a valid index of 82. These procedures store the
elements ml through n1 of 81 into the string s2 starting at element m2 and

return an unspecified value.

The procedures differ only when .1 and 82 are eq? and the substring being

moved overlaps the substring being replaced. In this case, substring-move-
right I copies serially, starting with the rightmost element and proceeding to
the left, while substring-move-left I begins with the leftmost element and
proceeds to the right.

%'
I

%"% ."'

IiII% III a

, . ,, +. .+.-.,'..'....+ -+'+.",.-o . ,... -, ,',., ,,,,°%+ , . ',+ ,.. ,.. ,,, ,.',,+,, ',, o, y ' ' +? .../..;, ".+ ,-,',,.:.,-o',V.

L.

The Revised Revised Report on Scheme 54

11.9. Vectors

Vectors are heterogenous mutable structures whose elements are indexed
by integers. The first element in a vector is indexed by zero, and the last

element is indexed by one less than the length of the vector. A vector of length
3 containing the number zero in element 0, the list (2 2 2 2) in element 1,

and the string "Anna in element 2 can be written as #(0 (2 2 2 2) "Anna")

Implementations are not required to support this notation.

Vectors are created by the constructor procedure make-vector. The elements
are accessed and assigned by the procedures vector-ref and vector-set 1.

(vector? obj) essential procedure

Returns #1true if obj is a vector, otherwise returns #I false.

(make-vector size) essential procedure
(make-vector size fill) procedure

Returns a newly allocated vector of size elements. If a second argument
is given, then each element is initialized to fidL Otherwise the initial contents
of each element is unspecified.

(vector obj ...) essential procedure

Returns a newly allocated vector whose elements contain the given argu-
ments. Analogous to list.

(vector 'a 'b 'c) -- > (a b c)

(vector-length vec) essential procedure

Returns the number of elements in the vector vec.

(vector-ref wee k) essential procedure

Returns the contents of element k of the vector vec. k must be a nonneg-
ative integer less than (vector-length wec).

(vector-ref '#(1 1 2 3 5 8 13 21) 6) --> 8

(vector-set! wee k obj) essential procedure

Stores obi in element k of the vector ee. k must be a nonnegative integer
less than (vector-length wc). The value returned by vector-set I is not

.p .. .

The Revised Revised Report on Scheme 55s

specified.

(let ((vec '#(O (2 2 2 2) "Anna")))
(vector-setl vec 1 '("Sue" "Sue"))
vec) S- *O

("Sue" "Sue")

"Anna")L

(vector->list tvec) essential procedure
Returns a list of the objects contained in the elements of vec. See

list->vector.

(vector-list '6 (dali dali didali)) - -> (dali dali didali)

(llut->vector elts) essential procedure
Returns a newly created vector whose elements are initialized to the

elements of the proper list cit..

(liat->vector '(dididit dali)) -- > *(dididit dali)

(vector-fill! vec fill procedure
Stores fill in every element of the vector vec. The value returned by

vector-f ill I is not specified.

.4

rr7A L ..

The Revised Revised Report on Scheme 56

11.10. The object table

(object-hash obj) procedure
(object-unhash a) procedure

obJ ect-hash associates an integer with obi in a global table and returns
obj. object-hash guarantees that distinct objects (in the sense of eq?) are
associated with distinct integers. object -unhash takes an integer and returns
the object associated with that integer if there is one, returning #tfalse
otherwise.

Rationale: obj ect-hash and obj ect-unhash can be implemented using asso-
ciation lists and the assq procedure, but the intent is that they be efficient
hash functions for general objects. Furthermore it is intended that the Scheme
system is free to destroy and reclaim the storage of objects that are accessible
only through the object table. It follows that object-unhash is of question-
able utility, as illustrated by the following scenario.

>>> (define x (cons 0 0))
x

>>> (object-hash x)
77
>>> (set! x 0)

>>> (gc) ; garbage collection occurs for some reason

>>> (obJect-unhash 77)

ill-defined: # Ifalse or (0 .0)

%

%% %
V ,,

* -A - * ji*, ,

ri -

The Revised Revised Report on Scheme 5T

11.11. Procedures

Procedures are created when lambda expressions are evaluated. Proce-
dures do not have a standard printed representation.

The most common thing to do with a procedure is to call it with zero or more
arguments. A Scheme procedure may also be stored in data structures or
passed as an argument to procedures such as those described below.

(apply proc args) essential procedure
(apply proc argl ... args) procedure

proc must be a procedure and args must be a proper list of arguments.
The first (essential) form calls proc with the elements of arg. as the actual
arguments. The second form is a generalization of the first that calls proc
with the elements of (append (list argI ...) args) as the actual arguments.

(apply + (list 3 4)) -- > 7

(define compose

(lambda (f g)
(lambda args

(f (apply g args))))) -- > unspecified

((compose 1+ *) 3 4) --> 13

(map f phiet) essential procedure
(map f plietl pliat2 ...) procedure

f must be a procedure of one argument and the plists must be proper
lists. If more than one plut is given, then they should all be the same length.
Applies f element-wise to the elements of the pliuts and returns a list of the
results. The order in which j is applied to the elements of the plists is not
specified.

(map cadr '((a b) (d e) (g h))) -- > (b e h)

(map (lambda (a) (expt n n))
'(1 2 3 4 5)) -- > (1 4 27 256 3125)

(map + '(1 2 3) '(4 5 6)) -- > (5 7 9)

(let ((count 0))
(map (lambda (ignored)

(setl count (1. count))

count)

'(a b c))) -- > un.pecified

.'4 .

The Revised Revised Report on Scheme 55

(for-each f pliat) essential procedure
(for-each f plisti plistf ...) procedure

The arguments to for-each are like the arguments to map, but for-each
calls f for its side effects rather than for its values. Unlike map, for-each is
guaranteed to call f on the elements of the pliets in order from the first element
to the last, and the value returned by for-each is not specified.

(let ((v (make-vector 5)))
(for-each (lambda Wi)

(vector-set! v i (* i 1)))
'(0 1 2 3 4))

v) -- #(0 1 4 9 16)

(call-with-current-continuation 1) essential procedure

f must be a procedure of one argument. call-with-current-continuation
packages up the current continuation (see the Rationale below) as an "escape
procedure" and passes it as an argument to f. The escape procedure is an ordi-
nary Scheme procedure of one argument that, if it is later passed a value, will
ignore whatever continuation is in effect at that later time and will give the
value instead to the continuation that was in effect when the escape procedure
was created.

The escape procedure created by call-with-current-continuation has un-
limited extent just like any other procedure in Scheme. It may be stored in
variables or data structures and may be called as many times as desired.

The following examples show only the most common uses of call-with-
current-continuation. If all real programs were as simple as these exam-
plea, there would be no need for a procedure with the power of call-with-
current-continuation.

"-L (call-vith-current-continuation

(lambda (exit)

(for-each (lambda (x)

(if (negative? x)

(exit x)))
'(54 0 37 -3 245 19))

*#true)) -- > -3

.V'S

%"~'~ /

The Revised Revised Report on Scheme 59
S.

(define list-length

(lambda (obj)

(c all-with-current-continuation

(lambda (return)

((rec loop (lambda (obj)

(cond ((null? obJ) 0)

((pair? obJ)

(1+ (loop (cdr obj))))
(else (return #Ifalse)))))

obJ)))))

-- > list-length

(list-length '(1 2 3 4)) -- > 4

(list-length '(a b . c)) -- > #Ifalse

Rationale: The classic use of call-with-current-continuation is for struc-

tured, non-local exits from loops or procedure bodies, but in fact call-with-

current-continuation is extremely useful for implementing a wide variety
of advanced control structures.

Whenever a Scheme expression is evaluated there is a continuation wanting
the result of the expression. The continuation represents an entire (default)

future for the computation. If the expression is evaluated at top level, for
example, then the continuation will take the result, print it on the screen,
prompt for the next input, evaluate it, and so on forever. Most of the time
the continuation includes actions specified by user code, as in a continuation
that will take the result, multiply it by the value stored in a local variable,
add seven, and give the answer to the top level continuation to be printed.
Normally these ubiquitous continuations are hidden behind the scenes and
programmers don't think much about them. On rare occasions, however, when
programmers need to do something fancy, then they may need to deal with
continuations explicitly, call-with-current-continuation allows Scheme
programmers to do that by creating a procedure that acts just like the current
continuation.

Most serious programming languages incorporate one or more special purpose
escape constructs with names like exit, return, or even goto. In 1965,
however, Peter Landin invented a general purpose escape operator called the
J-operator. John Reynolds described a simpler but equally powerful construct
in 1972. The catch special form described by Sussman and Steele in the 1975
report on Scheme is exactly the same as Reynolds's construct, though its name

s.

. L k " T

The Revised Revised Report on Scheme 60

came from a less general construct in MacLisp. The fact that the full power
of Scheme's catch could be obtained using a procedure rather than a special

. form was noticed in 1982 by the implementors of Scheme 311, and the name
c all-with-current-continuation was coined later that year. Although the
name is descriptive, some people feel it is too long and have taken to calling
the procedure call/cc.

>!

I.

.

..

The Revised Revised Report on Scheme 61

TT.12. Ports

Ports represent input and output devices. To Scheme, an input device is
a Scheme object that can deliver characters upon command, while an output
device is a Scheme object that can accept characters.

(call-with-Input-file string proc) essential procedure
(call-with-output-file string proc) essential procedure

, Proc is a procedure of one argument, and string is a string naming a
file. For call-with-input-file, the file must already exist; for call-with-
output-file, the effect is unspecified if the file already exists. Calls proc
with one argument: the port obtained by opening the named file for input or
output. If the file cannot be opened, an error is signalled. If the procedure
returns, then the port is closed automatically and the value yielded by the
procedure is returned. If the procedure does not return, then Scheme will not
close the port unless it can prove that the port will never again be used for a
read or write operation.

Rationale: Because Scheme's escape procedures have unlimited extent, it is
possible to escape from the current continuation but later to escape back
in. If implementations were permitted to close the port on any escape from
the current continuation, then it would be impossible to write portable code

* using both call-with-current-continuation and call-with-input-port
or call-with-output-port.

(input-port? obj) essential procedure
(output-port? obj) essential procedure

Returns #Itrue if obi is an input port or output port (respectively),
otherwise returns #false.

(current-nput-port) essential procedure
(current-output-port) essential procedure

Returns the current default input or output port.

(with-Input-from-file string thunk) procedure
(with-output-to-file 8tring thnk) procedure

thunk is a procedure of no arguments, and string is a string naming a file.
For with-input-from-file, the file must already exist; for with-output-
to-f ile, the effect is unspecified if the file already exists. The file is opened
for input or output, an input or output port connected to it is made the
default value returned by current-input-port or current-output-port,

6- V

. .~* .*-.

The Revised Revised Report on Scheme 62

and the tuk in called with no arguments. When the thunk returns, the
port is cosed and the previous default is restored. with-input-from-file
and with-output-to-file return the value yielded by thunk Furthermore,
in contrast to call-with-input-file and call-with-output-file, these

procedures
will attempt to close the default port and restore the previous

default whenever the current continuation changes in such a way as to make
it doubtful that the thunk will ever return.

(open-input-file fikeame) procedure
Takes a string naming an existing file and returns an input port capable

of delivering characters from the file. If the file cannot be opened, an error is
signalled.

(open-output-file fdename) procedure
Takes a string naming an output file to be created and returns an output

port capable of writing characters to a new file by that name. If the file cannot
be opened, an error is signalled. If a file with the given name already exists,
the effect is unspecified.

(close-nput-port port) procedure
(close-output-port port) procedure

Closes the file associated with port, rendering the port incapable of deliv-
ering or accepting characters. The value returned is not specified.

V[

d!

e

d

The Revised Revised Report on Scheme 63

13.13. Input

* The read procedure converts written representations of Scheme objects
into the objects themselves. The written representations for Scheme objects
are described in the sections devoted to the operations on those objects. I

(eof-object? obj) essential procedure
Returns * Itrue if o bj is an end of file object, otherwise returns # I false.

The precise set of end of file objects will vary among implementations, but in
any case no end of file object will ever be a character or an object that can
be read in using read.

(read) essential procedure
(read port) essential procedure

Returns the next object parsable from the given input port, updating port
to point to the first character past the end of the written representation of the
object. If an end of file is encountered in the input before any characters are
found that can begin an object, then an end of file object is returned. If an end
of file is encountered after the beginning of an object's written representation,
but the written representation is incomplete and therefore not parsable, an
error is signalled. The port argument may be omitted, in which case it defaults
to the value returned by current- input -port.

Rationale: This corresponds to Common Lisp's read-preserving-white space,
but for simplicity it is never an error to encounter end of file except in the
middle of an object.

(read-char) essential procedure
(read-char port) essential procedure

Returns the next character available from the input port, updating the
port to point to the following character. If no more characters are available,
an end of file object is returned, port may be omitted, in which case it defaults
to the value returned by current- input -port.

(char-ready?) procedure m*

(char-ready? port) procedure
Returns 8# true if a character is ready on the input port and returns

1 f alse otherwise. If char-ready returns # I true then the next read-char
operation on the given port is guaranteed not to hang. If the port is at end of
file then char-ready? returns # I true. port may be omitted, in which case it
defaults to the value returned by current -input -port.

The Revised Revised Report on Scheme 64

Rationale: char-ready? exists to make it possible for a program to accept
* characters from interactive ports without getting stuck waiting for input. Any

rubout handlers associated with such ports must ensure that characters whose
existence has been asserted by char-ready? cannot be rubbed out. If char-
ready? were to return #1 Ifalse at end of file, a port at end of file would be
indistinguishable from an interactive port that has no ready characters.

(load filename) essential procedure
filename should be a string naming an existing file containing Scheme

source code. The load procedure reads expressions from the file and evaluates
them sequentially as though they had been typed interactively. It is not
specified whether the results of the expressions are printed, however. The
load procedure does not affect the values returned by current- input -port
and current -output -port. load returns an unspecified value.

Rationale: For portability load must operate on source files. Its operation on

other kinds of files necessarily varies among implementations.

O.

40%

The Revised Revised Report on Scheme 65

11.14. Output

(write obj) essential procedure
(write obj port) essential procedure

Writes a representation of o6j to the given port. Strings that appear in the
written representation are enclosed in doublequotes, and within those strings
backslash and doublequote characters are escaped by backslashes. write re-
turns an unspecified value. The port argument may be omitted, in which case
it defaults to the value returned by current-output-port. See display.

(display obj) essential procedure
(display obj port) essential procedure

Writes a representation of obj to the given port. Strings that appear in
the written representation are not enclosed in doublequotes, and no characters
are escaped within those strings, display returns an unspecified value. The
port argument may be omitted, in which case it defaults to the value returned
by current-output-port. See write.

Rationale: Like Common Lisp's prinl and princ, write is for producing
machine-readable output and display is for producing human-readable out-

put. Implementations that allow "slashification" within symbols will probably
want write but not display to slashify funny characters in symbols.

(newline) essential procedure
(newline port) essential procedure

Writes an end of line to port. Exactly how this is done differs from
one operating system to another. Returns an unspecified value. The port
argument may be omitted, in which case it defaults to the value returned by
current -output-port.

(write-char char) essential procedure
(write-char char port) essential procedure

Writes the character char (not a written representation of the character)
to the given port and returns an unspecified value. The port argument may be
omitted, in which case it defaults to the value returned by current-output-
port.

, *I ~ *~ . .I *- * *:. *~*~*~.~ I%

-. The Revised Revised Report on Scheme 66

(transcript-on filename) procedure
(transcript-off) procedure

Filename must be a string naming an output file to be created. The
effect of transcript-on is to open the named file for output, and to cause a
transcript of subsequent interaction between the user and the Scheme system
to be written to the file. The transcript is ended by a call to transcript-
off, which closes the transcript file. Only one transcript may be in progress
at any time, though some implementations may relax this restriction. The
values returned by these procedures are unspecified.

Rationale: These procedures are redundant in some systems, but systems that
need them should provide them.

%

Oo..

.4.

." ",".".. .. -.' ." .'"'..',."-.'-.:-° --:'.:..'-:-'..":,':/. ": '.-'..'-.. ...-..'. .-. ... ".'...-,.--.-. .''.-"'.'.,.-.. .-.-.. .".".. .. ','.. '2

The Revised Revised Report on Scheme 67

Bibliography and References

1. Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure
and Interpretation of Computer Programs. MIT Press, Cambridge MA,
1985.

2. John Batali, Chris Hanson, Neil Mayle, Howard Shrobe, Richard M. Stall-
man, and Gerald Jay Sussman, The Scheme-81 Architecture-System
and Chip. In Proceedings of the MIT Conference on Advanced Research
in VLSI, Paul Penfield Jr [ed], Artech House, Dedham MA, 1982.

3. William Clinger, The Scheme 311 Compiler: an Exercise in Denotational
Semantics. In Conference Record of the 1984 ACM Symposium on Lisp
and Functional Programming, August 1984, pages 356-364.

4. Carol Fessenden, William Clinger, Daniel P Friedman, and Christopher
Haynes, Scheme 311 Version 4 Reference Manual. Indiana University
Computer Science Technical Report 137, February 1983.

5. D Friedman, C Haynes, E Kohlbecker, and M Wand, Scheme 84 Interim
Reference Manual. Indiana University Computer Science Technical Re-
port 153, January 1985.

6. Daniel P Friedman and Christopher T Haynes, Constraining Control.
In Proceedings of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, January 1985, pages 245-254.

7. Christopher T Haynes, Daniel P Friedman, and Mitchell Wand, Continu-
ations and coroutines. In Conference Record of the 1984 A CM Symposium
on Lisp and Functional Programming, August 1984, pages 293-298.

8. Peter Landin, A Correspondence Between Algol 60 and Church's Lambda
Notation: Part I. In Communications of the ACM, 8(2), February 1965,
pages 89-101.

9. Drew McDermott, An Efficient Environment Allocation Scheme in an
Interpreter for a Lexically-scoped Lisp. In Conference Record of the 1980
Lisp Conference, August 1980, pages 154-162.

10. Steven S Muchnick and Uwe F Pleban, A Semantic Comparison of Lisp
and Scheme. In Conference Record of the 1980 Lisp Conference, August
1980, pages 56-64.

11. MIT Scheme Manual, Seventh Edition, September 1984.
12. Peter Naur et al, Revised Report on the Algorithmic Language Algol 60.

In Communications of the ACM, 6(1), January 1963, pages 1-17.
13. Kent M Pitman, The Revised MacLisp Manual. MIT Artificial Intelli-

gence Laboratory Technical Report 295, 21 May 1983 (Saturday Evening
*' Edition).

.

The Revised Revised Report on Scheme 66

14. Jonathan A Rees and Norman I Adams IV, T: A Dialect of Lisp or,
LAMBDA: The Ultimate Software Tool. In Proceedings of the 1982 A CM
Symposium on Lisp and Functional Programming, August 1982, pages
114-122.

15. Jonathan A Rees, Norman I Adams IV, and James R Meehan, The T
Manual. Fourth Edition, 10 January 1984.

16. John Reynolds, Definitional Interpreters for Higher Order Programming
Languages. In ACM Conference Proceedings, 1972, pages 717-740.

17. Richard M Staliman, Phantom Stacks-If You Look Too Hard, They
Aren't There. MIT Artificial Intelligence Memo 556, July 1980.

18. Guy Lewis Steele Jr, and Gerald Jay Sussman, Lambda, the Ultimate
Imperative. MIT Artificial Intelligence Memo 353, March 1976.

19. Guy Lewis Steele Jr, Lambda, The Ultimate Declarative. MIT Artificial
Intelligence Memo 379, November 1976.

20. Guy Lewis Steele Jr, Debunking the "Expensive Procedure Call" Myth,
or Procedure Call Implementations Considered Harmful, or Lambda, The
Ultimate GOTO. In A CM Conference Proceedings, 1977, pages 153-162.

21. Guy Lewis Steele Jr, Rabbit: a Compiler for Scheme. MIT Artificial
Intelligence Laboratory Technical Report 474, May 1978.

22. Guy Lewis Steele Jr, An overview of Common Lisp. In Conference Record
of the 1982 ACM Symposium on Lisp and Functional Programming, Au-
gust 1982, pages 98-107.

23. Guy Lewis Steele Jr, Common Lisp: the Language. Digital Press, 1984.

24. Guy Lewis Steele Jr and Gerald Jay Suisnan, The revised report on
Scheme, a dialect of Lisp. MIT Artificial Intelligence Memo 452, January
1978.

25. Guy Lewis Steele Jr and Gerald Jay Sussman, The Art of the Interpreter,
or The Modularity Complex (Parts Zero, One, and Two). MIT Artificial
Intelligence Memo 453, May 1978.

26. Guy Lewis Steele Jr and Gerald Jay Sussman, Design of a Lisp>-Based
Processor. In Communications of the ACM, 23(11), November 1980,
pages 628-645.

27. Guy Lewis Steele Jr and Gerald Jay Sussman, The Dream of a Lifetime:
A Lazy Variable Extent Mechanism. In Conference Record of the 1950
Lisp Conference, August 1980, pages 163-172.

28. Gerald Jay Sussman and Guy Lewis Steele Jr, Scheme: an Interpreter
for Extended Lambda Calculus. MIT Artificial Intelligence Memo 349,
December 1975.

%,

'.WW

The Revised Revised Report on Scheme 69

29. Gerald Jay Suasman, Jack Holloway, Guy Lewis Steele Jr, and Alan Bell,
Scheme-79-Lisp on a chip. In IEEE Computer, 14(7), July 1981, pages
10-21.

30. Mitchell Wand, Continuation-based Program Transformation Strategies.
In Journal of the ACM, 27(1), 1978, pages 174-180.

31. Mitchell Wand, Continuation-based Multiprocessing. In Conference Record
of the 1980 Lisp Conference, August 1978, pages 19-28.

SI.
4.

4

.4.A

., ,

°a~

.o

4 "% , - " " ,. .- : ' . '" " ° e
"

" '- - . ,-• - " " " " •4 : % "-

The Revised Revised Report on Scheme 70

Index

* Ifalse 22
I null 29

0 1true 22
12

+ 39
39

/ 39
1+ 39

1+ 38
< 38
<= 38
<=? 38

38
-. 7 38
=? 38
> 38
>= 38

>? 38
20

abe 39
Wcoo 41
and is

*angle 41
append 30
append! 30
apply 57

auin 41
asoc 31
ausq 31
'awy 31
&tan 41
backquote 20
begin 19 0
binding construct 11 0
bound 11
caaaar 28

%1 'I

% 4d

The Revised Revised Report on Scheme T

caaadr 28
caaar 28
caadar 28

*caaddr 29
* acaadr 28

caar 28
cadaar 29
cadadr 29
cadar 28
caddar 29
cadddr 29
caddr 28
cadr 28
call-with-current-continuation 58
call-with-input-file 61
call-with-output-file 61
car 28
case 14
cdaaar 29
cdaadr 29
cdaar 28
cdadar 29
cdaddr 29
cdadr 28
cdar 28
cddaar 29
cddadr 29
cddar 28
cdddar 29
cddddr 29
cdddr 28
cddr 28
cdr 28
ceiling 40
char->integer 49
char-alphabetic? 49
char-ci<=? 49
char-ci<? 49
char-ci=? 49
char-ci>=? 49

j.*

The Revised Revised Report on Scheme 72

char-ci>? 49
char-downcase 50
char-lower-case? 49
char-numeric? 49
char-ready? 63
char-upeam so

* char-upper-cms? 49 f

char-whitespace? 49
char<=? 48

char<? 48

char=? 48
char>=? 48
char>?~ 48
char? 48
charnpt-or 48
close-input-port 62 f

comment 6
complex? 37

*cond 14
cons 27
constant 9
coo 41
current-input-port 61
current-output-port 61
define 17,18
display 65
do 19
else 14,15
empty list 26
environment 11

*eof-object? 63
eq? 24
equal? 25

eqv? 25
essential 9 f

even? 38
exact->inexact 41
exact? 38

Bexact numbers 36
*exactness 47

4%

D"

The Revised Revised Report on Scheme 78

exp 41
expt 41
false 22
fix 46
fno 46
floor 40
for-each 58
formats 44
gcd 40
heur 47
identifier 5
if 13
imag-part 41
inexact numbers 36
inexact->exact 41
inexact? 38
input-port? 61
imt 48
integer->char 49
integer? 37
keyword 11
lambda 12,13
last-pair 31
*1cm 40
length 30
let 15
let* 16
letrec 16
list 29
list 27
list->string 53

list->vector 55
list-ref 30
list-tail 30
load 64
log 41
macros 20
magnitude 41
make-polar 41
make-rectangular 41

%*1

7 71 if

The Revised Revised Report on Scheme 74

make-string 52
make-vector 54 4."

map 57
max 38
member 31
memq 31

* memv 31
rn 38
modulo 39
named-lambda 17
negative? 38 ,-
newline 64
nil 22
not 22
null? 29
number->string 44
number? 37
object-hash 56
object-unhash 56
odd? 38
open-input-file 62
open-output-file 62
or 15

,4 output-port? 61
pair 26
pair? 27
polar 47
positive? 38
p precision 45
procedure 9
procedure call 12
proper list 26
quote 12
quotient 39
radix 47
rat 46
rational? 37
rationalize 40
read 64
read-char 63

%%

|, , ,. ,.,, :, . .,S,,.,.* ...,.. .,. -5* , ,. , , h.
. t, .*|~~* S'SS555S

The Revised Revised Report on Scheme T

real-part 41
real? 37
rec 17

*rect 46
region 11
remainder 39
reverse 30
round 40
mci 46
sequence 19
set! 18
set-car! 28
set-cdrI 28
signal an error 10
sin 41
special form 9,11
sqrt 41
string->list 53
string->number 44
string->symbol 34
string-append 53
strimg-ci<=? 52
string-ci<? 52

stringci=IL5
string-ci=? 52
strmng-ci>? 52

string-copy 53
string-fiII! 53
string-length 52
string-null? 51
string-ref 52
string-set! 53
string<=? 52
string<c? 52
string=? 52
string>=? 52
string>? 52
string? 51
substring 52
substring-fill! 53

The Revised Revised Report on Scheme 76

substring-move-left! 53
substring-move-right! 53
symbol->string 34
symbol? 33
t 22
tan 41

*transcript-off 66
transcript-on 66

b. true 22

truncate 40
unbound variable 11
variable 9,11
vector 54
vector->list 55

'avector-fill! 55
vector-length 54
vector-ref 54
vector-set 54

vector? 54
with-input-from-file 61
with-output-to-file 61
write 65
write-char 65
zero? 38

% 5,

'-5

FILMED

10-85

DTIC

